ANALYSIS OF FREE FALL AND PROJECTILE MOTION: A SIMULATION WITH TRACKER FOR THE STUDY OF FUNCTIONS IN THE 1st YEAR OF HIGH SCHOOL.
DOI:
https://doi.org/10.61164/rmnm.v11i1.4163Keywords:
Keywords: Quadratic function; Free fall; Projectile motion; Interdisciplinarity; Tracker.Abstract
This article presents an interdisciplinary teaching proposal that connects the contents of Physics and Mathematics through the use of the Tracker software, aiming to understand the motions of free fall and projectile launch associated with the study of quadratic functions. The research was conducted with students from the 1st year of high school at a public school in the municipality of Boqueirão-PI, using both qualitative and quantitative approaches. Pre-tests and post-tests were carried out to assess students' knowledge, along with practical activities involving video analysis and a perception questionnaire. The results show progress in students' learning regarding the relationship between mathematical and physical concepts, such as the vertex of a parabola and the trajectory of moving bodies. The use of Tracker contributed to learning by arousing students’ interest and facilitating the development of investigative skills. It is concluded that the use of technological resources in the teaching of functions, combined with mathematical modeling and interdisciplinary practice, becomes a potential enhancer in the teaching-learning process.
Keywords: Quadratic function; Free fall; Projectile motion; Interdisciplinarity; Tracker.
References
AUSUBEL, D. P. Aquisição e retenção de conhecimentos: uma perspectiva cognitiva. Lisboa: Plátano, 1978.
BASSANESI, G. A. Modelagem matemática: uma alternativa metodológica no ensino-aprendizagem de matemática. 2. ed. São Paulo: Contexto, 2002.
BRASIL. Base Nacional Comum Curricular (BNCC). Brasília: MEC, 2018. Disponível em: https://www.gov.br/mec/pt-br/assuntos/noticias/bncc. Acesso em: 10 jun. 2025.
BRASIL. Orientações Educacionais Complementares aos Parâmetros Curriculares Nacionais: Ensino Médio – PCN+. Brasília: MEC/SEMTEC, 2002.
ENGELBRECHT, J.; BORBA, M. C. The role of digital technology in connecting mathematics and physics in secondary education. ZDM – Mathematics Education, v. 56, p. 79–93, 2024. https://doi.org/10.1007/s11858-024-01472-3
FAZENDA, I. C. A. Interdisciplinaridade: história, teoria e pesquisa. 6. ed. Campinas: Papirus, 2008.
FERREIRA, L. M.; NASCIMENTO, M. T.; LOPES, R. S. Aprendizagem significativa de cinemática por meio da modelagem matemática com equações quadráticas. Revista Brasileira de Ensino de Física, v. 45, n. 1, e20230451, 2023. https://doi.org/10.1590/1806-9126-rbef-2023-0451
HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física: mecânica. 10. ed. Rio de Janeiro: LTC, 2016.
LAHME, S.; LÜTZEN, J.; WAGENER, M. Data literacy and physics modeling: engaging students through technology-enhanced inquiry. Physical Review Physics Education Research, v. 19, n. 2, 2023. https://doi.org/10.1103/PhysRevPhysEducRes.19.020104
MALTEMPI, M. V. A. Tecnologia no ensino de matemática: desafios e possibilidades. In: MACHADO, S. D. (org.). Ensino de matemática: tendências internacionais. Campinas: Autores Associados, 2008. p. 53-66.
TIPLER, P. A.; MOSCA, G. Física para cientistas e engenheiros. 6. ed. Rio de Janeiro: LTC, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Multidisciplinar do Nordeste Mineiro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.