TÉCNICAS in vitro PARA AVALIAÇÃO DE POTENCIAIS INIBIDORES DA BOMBA DE EFLUXO NORA EM Staphylococcus aureus: UMA BREVE REVISÃO
DOI:
https://doi.org/10.61164/rsv.v11i1.2814Abstract
The use of antimicrobials revolutionized medicine, but excessive use has led to an increase in antimicrobial resistance (AMR), particularly in bacteria such as Staphylococcus aureus. The NorA protein, an efflux pump from the major facilitator superfamily (MFS), plays a crucial role in bacterial resistance by expelling antimicrobials from the cell, rendering them ineffective. This integrative review analyzes in vitro methodologies for evaluating efflux pump inhibitors (EPIs) that target NorA, highlighting their potential to restore therapeutic efficacy and control infections caused by multidrug-resistant S. aureus
References
AHMAD, Adel Attia M. et al. Thymoquinone’potent impairment of multidrug-resistant Staphylococcus aureus NorA efflux pump activity. Scientific Reports, v. 14, n. 1, p. 16483, 2024. Disponível em: https://www.nature.com/articles/s41598-024-23456-7.
BIALVAEI, Abed Zahedi et al. Current methods for the identification of carbapenemases. Journal of Chemotherapy, v. 28, n. 1, p. 1-19, 2016. Disponível em: https://www.tandfonline.com/doi/abs/10.1179/1973947815Y.0000000029.
CHANDAL, Nishtha et al. Efflux pump inhibitory potential of indole derivatives as an arsenal against norA over-expressing Staphylococcus aureus. Microbiology Spectrum, v. 11, n. 5, p. e04876-22, 2023. Disponível em: https://journals.asm.org/doi/10.1128/spectrum.04876-22.
DE MORAIS OLIVEIRA-TINTINO, Cícera Datiane et al. The 1, 8-naphthyridines sulfonamides are NorA efflux pump inhibitors. Journal of Global Antimicrobial Resistance, v. 24, p. 233-240, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S2213716521000252.
FELICETTI, Tommaso et al. New C-6 functionalized quinoline NorA inhibitors strongly synergize with ciprofloxacin against planktonic and biofilm growing resistant Staphylococcus aureus strains. European Journal of Medicinal Chemistry, v. 241, p. 114656, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0223523422007051.
FERRI, Maurizio et al. Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, v. 57, n. 13, p. 2857-2876, 2017. Disponível em: https://www.tandfonline.com/doi/full/10.1080/10408398.2015.1077192.
KUMAR, Gautam; TUDU, Asha Kiran. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorganic & Medicinal Chemistry, v. 80, p. 117187, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S0968089623005634.
LEAL, Antonio Linkoln Alves Borges et al. Potentiating activity of Norfloxacin by synthetic chalcones against NorA overproducing Staphylococcus aureus. Microbial Pathogenesis, v. 155, p. 104894, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0882401021000915.
LOBANOVSKA, Mariya; PILLA, Giulia. Focus: drug development: Penicillin’s discovery and antibiotic resistance: lessons for the future?. The Yale Journal of Biology and Medicine, v. 90, n. 1, p. 135, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394671/.
MEDINA, Eva; PIEPER, Dietmar Helmut. Tackling threats and future problems of multidrug-resistant bacteria. How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives, p. 3-33, 2016. Disponível em: https://link.springer.com/chapter/10.1007/978-3-319-48098-1_1.
Ministério da Saúde. DIRETRIZES METODOLÓGICAS PARA ELABORAÇÃO DE DIRETRIZES CLÍNICAS. 2ª ed. Editora, 2020. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_metodologicas_clinicas.pdf.
MUNIZ, Débora Feitosa et al. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chemistry, v. 337, p. 127776, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0308814620314991.
OLIVEIRA-TINTINO, C. D. M. et al. The 1, 8-naphthyridines sulfonamides are NorA efflux pump inhibitors. Journal of Global Antimicrobial Resistance, 2021; 24: 233–40. Disponível em: https://www.sciencedirect.com/science/article/pii/S2213716521000252.
PEREIRA DA CRUZ, Rafael et al. Effect of α-bisabolol and its β-cyclodextrin complex as TetK and NorA efflux pump inhibitors in Staphylococcus aureus strains. Antibiotics, v. 9, n. 1, p. 28, 2020. Disponível em: https://www.mdpi.com/2079-6382/9/1/28.
RAMPACCI, Elisa et al. Inhibition of Staphylococcus pseudintermedius Efflux Pumps by Using Staphylococcus aureus NorA Efflux Pump Inhibitors. Antibiotics, v. 12, n. 5, p. 806, 2023. Disponível em: https://www.mdpi.com/2079-6382/12/5/806.
SOWOLE, Luciana; MING, Damien K.; DAVIES, Frances. Multidrug-resistant bacteria. British Journal of Hospital Medicine, v. 79, n. 5, p. C66-C69, 2018. Disponível em: https://www.magonlinelibrary.com/doi/full/10.12968/hmed.2018.79.5.C66.
THAMILSELVAN, Gopalakrishnan et al. Development of an antibiotic resistance breaker to resensitize drug-resistant Staphylococcus aureus: In silico and in vitro approach. Frontiers in Cellular and Infection Microbiology, v. 11, p. 700198, 2021. Disponível em: https://www.frontiersin.org/articles/10.3389/fcimb.2021.700198/full.
UBUKATA, K.; ITOH-YAMASHITA, N.; KONNO, M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, v. 33, n. 9, p. 1535-1539, 1989. Disponível em: https://journals.asm.org/doi/abs/10.1128/AAC.33.9.1535.