BIODEGRADAÇÃO DE COPOLÍMERO ACRÍLICO-ESTIRENADO COM REDUÇÃO DE EFEITO TÓXICO EM CUCUMIS ANGURIA L.

Autores

DOI:

https://doi.org/10.61164/rmnm.v9i1.3939

Palavras-chave:

Biorremediação, Ecotoxicidade, Resinas

Resumo

Polímeros sintéticos oferecem diversas aplicações na indústria, mas sua persistência no ambiente representa um desafio. Este trabalho avaliou a utilização de um copolímero acrílico-estirenado (CAE) como fonte de carbono por Pseudomonas aeruginosa TGC04 e os efeitos ecotoxicológicos dos metabólitos sobre a germinação e desenvolvimento de Cucumis anguria L. (maxixe-do-norte). O experimento foi realizado em frascos contendo meio mineral mínimo adicionado com CAE 1%, e incubado por 72h à 30ºC. A redução do contaminante foi de 5,01%, determinada por gravimetria. Isto resultou na recuperação parcial do desenvolvimento da planta, comparada ao controle, demonstrando uma diferença significativa na massa da raiz (p=0,041) e tendência à significância na massa da parte aérea (p=0,065), i.e., caule e folhas. Como conclusão, P. aeruginosa TGC04 exibiu potencial para uso na biorremediação.

Referências

AALTO-KORTE, K. Acrylic resins. In: MAIBACH, H.I. (ed.). Kanerva’s occupational dermatology. Cham: Springer, 2019. p. 737-756.

ALEID, G.M.; ALSHAMMARI, A.S.; TRIPATHY, D.B.; GUPTA, A.; AHMAD, S. Polymeric surfactants: recent advancement in their synthesis, properties, and industrial applications. Macromolec Chem Physics. v. 224, n. 17, p. 2300107, 2023. https://doi.org/10.1002/macp.202300107

ALI, S.S.; ELSAMAHY, T.; AL-TOHAMY, R.; ZHU, D.; MAHMOUD, Y.A.G.; ABDELKAREEM, M.A.; SUN, J. Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci Total Environ. v. 780, p. 146590, 2021. https:/doi.org/10.1016/j.scitotenv.2021.146590

BOOTH, A.M.; HERNANDEZ, L.M.; RODRIGUEZ, D.M.; WATSON, S.A.; SMITH, J.D.; THOMPSON, R.C. Uptake and toxicity of methylmethacrylate-based nanoplastic particles in aquatic organisms. Environ Toxicol Chem. v. 35, n. 7, p. 1641-1649, 2015. https:/doi.org/10.1002/etc.3076

CAVALCANTI, T.G.; VIANA, A.A.G.; GUEDES, T.P.; FREIRE, A.S.; TRAVASSOS, R.A.; VASCONCELOS, U. Seed options for toxicity tests in soils contaminated with oil. Can J Pure Appl Sci. v. 10, n. 3, p. 4039-4045, 2016.

DEMIRORS, M. Styrene polymers and copolymers. In: KROSCHWITZ, J.I. (ed.). Applied Polymer Science: 21st century. New York: Wiley, 2000. p. 93-106.

DURVAL, I.; RUFINO, R.; SARUBBO, L. Biosurfactant as an environmental remediation agent: toxicity, formulation, and application in the removal of petroderivate in sand and rock walls. Biosci Res Agric Chem. v. 12, n. 1, p. 34-48, 2022. https:/doi.org/10.10.33263/BRIAC121.034048

ENERIJIOFI, K.E. Bioremediation of environmental contaminants: a sustainable alternative to environmental management. In: SINGH, S. N. (ed.). Bioremediation for environmental sustainability. London: Elsevier, 2021. p. 461-480.

FILLOUX, A.; RAMOS, J-L. Pseudomonas aeruginosa: biology, pathogenesis and control strategies. Cham: Springer Nature, 2022.

FRANÇA, F.P.; MUTECA, F.F.L.; OLIVEIRA, F.J.S. Biorremediation of fluvial sediment contaminated by Angolan crude oil. Braz J Petrol Gas. v. 8, p. 139–149, 2014. https://doi.org/10.5419/bjpg2014-0013

GAYTÁN, I.; BURELO, M.; LOZA-TAVERA, H. Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl Microbiol Biotechnol. v. 105, n. 3, p. 991-1006, 2021. https://doi.org/10.1007/s00253-020-11073-1

GHADAMGAHI, F.; TARIGHI, S.; TAHERI, P.; SARIPELLA, G.V.; ANZALONE, A.; KALYANDURG, P.B.; CATARA, V.; ORTIZ, R.; VETUKURI, R.R. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens. Biology, v. 11, n. 1, p. 140, 2022. https://doi.org/10.3390/biology11010140

HU, F.; WANG, P.; LI, Y.; LING, J.; RUAN, Y.; YU, J.; ZHANG, L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: mechanisms, methods and challenges. Environ Res. v. 239, n. 1, p. 117211, 2023. https://doi.org/10.1016/j.envres.2023.117211

KOTOVA, I.B.; TAKTAROVA, Y.V.; TSAVKELOVA, E.A.; EGOROVA, M.A.; BUBNOV, I.A.; MALAKHOVA, D.V.; SHIRINKINA, L.I.; SOKOLOVA, T.G.; BONCH-OSMOLOVSKAYA, E.A. Microbial degradation of plastics and approaches to make it more efficient. Microbiology. v. 90, p. 671-701, 2021. https://doi.org/10.1134/S0026261721060084

KWON, B.G.; MOON, K. Physicochemical properties of styrene oligomers in the environment. Sci Total Environ. v. 683, p. 216–220, 2019. https://doi.org/10.1016/j.scitotenv.2019.05.301

LEE, H.M.; KIM, H.R.; JEON, E.; YU, H.C.; LEE, S.; LI, J.; KIM, D-H. Evaluation of the biodegradation efficiency of four various types of plastics by Pseudomonas aeruginosa isolated from the gut extract of superworms. Microorganisms, v. 8, n. 9, p. 1341, 2020. https:doi.org/10.3390/microorganisms8091341

OELSCHLÄGEL, M.; KASCHABEK, S.R.; ZIMMERLING, J.; SCHLÖMANN, M.; TISCHLER, D. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. Biotechnol Rep. v. 6, p. 20-26, 2015. https://10.1016/j.btre.2015.01.003

ROZMAN, U.; KALČÍKOVÁ, G. The first comprehensive study evaluating the ecotoxicity and biodegradability of water-soluble polymers used in personal care products and cosmetics. Ecotoxicol Environ Saf. v. 228, p. 113016, 2021. https://doi.org/10.1016/j.ecoenv.2021.113016

TEJERA-GARCIA, R.; CONNELL, L.; SHAW, W.A.; KINNUNEN, P.K.J. Gravimetric determination of phospholipid concentration. Chem Physics Lip. v. 165, n. 6, p. 689-695, 2012. https://doi.org/10.1016/j.chemphyslip.2012.06.005

WAGHUNDE, R.R.; SABALPARA, A.N. Impact of Pseudomonas spp. on plant growth, lytic enzymes and secondary metabolites production. Front Agron. v. 3, p. 752196, 2021. https://doi.org/10.3389/fagro.2021.752196

WOOD, S. J.; KUZEL, T.M.; SHAFIKHANI, S H. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells, v. 12, n. 1, p. 199, 2023. https://doi.org/10.3390/cells12010199

XU, H.; CHEN, C.; PANG, Z.; ZHANG, G.; ZHANG, W.; KAN, H. Effects of microplastics concentration on plant root traits and biomass: experiment and meta-analysis. Ecotoxicol Environ Saf. v. 285, p. 117038, 2024. https://doi.org/10.1016/j.ecoenv.2024.117038

Downloads

Publicado

2025-05-15

Como Citar

Almeida, G. I. L. de, Lima, K. Y. G. . de, & Vasconcelos, U. (2025). BIODEGRADAÇÃO DE COPOLÍMERO ACRÍLICO-ESTIRENADO COM REDUÇÃO DE EFEITO TÓXICO EM CUCUMIS ANGURIA L. Revista Multidisciplinar Do Nordeste Mineiro, 9(1), 1–19. https://doi.org/10.61164/rmnm.v9i1.3939

Artigos mais lidos pelo mesmo(s) autor(es)