OT-DRIVEN OPTIMIZATION OF SELF-SUFFICIENT SOLAR ENERGY SYSTEMS THROUGH METEOROLOGICAL DATA INTEGRATION
DOI:
https://doi.org/10.61164/rmnm.v10i1.4031Keywords:
Solar Energy, Off-Grid Model, MicroPython, Python, Embedded Systems, IoT, Solar RadiationAbstract
Over two million Brazilians lack access to electricity, as reported by the Brazilian Institute of Geography and Statistics (IBGE). Meanwhile, a significant portion of the population reliant on hydroelectric power faces recurring energy price hikes driven by water scarcity and systemic mismanagement. Decentralized solar energy systems offer a promising alternative; however, their intermittent nature due to seasonal variability can compromise reliability for off-grid users. To address this challenge, this study proposes an IoT-enabled embedded system that integrates meteorological data with a solar radiation prediction algorithm. The system dynamically correlates energy generation forecasts with consumption patterns to provide real-time recommendations for optimized usage, empowering users to adjust consumption proactively. During testing, the algorithm demonstrated strong alignment between predicted and actual solar energy generation, highlighting its potential to enhance energy resilience in off-grid scenarios.
References
AMBARITA, H. Development of software for estimating clear sky solar radiation in Indonesia. Journal of Physics: Conference Series. Medan, Indonesia, 2017. Acesso em: 14 de Novembro de 2019. DOI: https://doi.org/10.1088/1742-6596/801/1/012093.
BOSO, A. C. M. R.; GABRIEL, C. P. C.; GABRIEL FILHO, L. R. A. Análise de Custos dos Sistemas Fotovoltaicos On-grid e Off-grid no Brasil. ANAP Brasil, 1904-3240, v.8, n.12, p.57-66, 2015. Acesso em: 14 de março de 2018. DOI: https://doi.org/10.17271/1984324081220151138.
FU, Pinde; RICH, Paul M. A Geometric Solar Radiation Model and its Applications in Agriculture and Forestry. Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry. p.357-364, jan. 2000. Acesso em: 30 de outubro de 2019. DOI: https://doi.org/10.1016/s0168-1699(02)00115-1.
GUNJAL, P. et al. An IOT Based Solar Power Robotic Tracking & Monitoring System. International Conference on Communication and Information Processing (ICCIP). Acesso em: 10 de novembro de 2019. DOI: http://dx.doi.org/10.2139/ssrn.3416985.
HARTLEY, M.; CARLINI, L.; BELLOCCHI, G. A Software Component for Estimating Solar Radiation. ELSEVIER. p. 411-416, jul. 2005. Acesso em: 12 de novembrp de 2019. DOI: https://doi.org/10.1016/j.envsoft.2005.04.002.
MOOJEN, Thomaz M. B.; CAVALCANTE, Rosane B. L.; MENDES, Carlos A. B. Avaliação da Radiação Solar com Base em Dados de Nebulosidade. Geografia, v.21, n.3, p.41-55. Londrina-PR, set/dez. 2012. Acesso em: 20 de setembro de 2019. DOI: https://doi.org/10.5433/2447-1747.2012v21n3p41.
POP-VADEAN, A. et al. Harvesting Energy an Sustainable Power Source, Replace Batteries for Powering WSN and Devices on the IoT. IOP Conference Series: Materials Science and Engineering. p. 1-9, 2016. Acesso em: 15 de novembro de 2019. DOI: https://doi.org/10.1088/1757-899X/200/1/012043.
RAMAN, A. P.; LI, W.; FAN, S. Generating Light from Darkness. Joule. p.1-8, Los Angeles-California, nov. 2019. Acesso em: 01 de novembro de 2019. DOI: https://doi.org/10.1016/j.joule.2019.08.009.
SPANIAS, Andreas S. Solar Energy Management as an Internet of Things (IoT) Application. 8th International Conference on Information, Intelligence, Systems & Applications (IISA). Lanarca – Cyprus, mar. 2018. Acesso em: 04 de novembro 2019. DOI: 10.1109/IISA.2017.8316460.
SUDDARD-BANGSUND, John et al. Organic Salts as a Route to Energy Level Control in Low Bandgap, High Open-Circuit Voltage Organic and Transparent Solar Cells that Approach the Excitonic Voltage Limit. Advanced Energy Meterials. p.1-10, East Lansing – MI, 2016. Acesso em: 27 de novembro de 2019. DOI: https://doi.org/10.1002/aenm.201501659.
Visual Studio Code. Wikipedia. Março de 2020. Acesso em: 31 Mar. 2020. Disponível em: https://en.wikipedia.org/wiki/Visual_Studio_Code.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Multidisciplinar do Nordeste Mineiro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.