THE USE OF MACHINE LEARNING IN THE EARLY DIAGNOSIS OF BREAST CANCER THROUGH IMAGING EXAMS: A LITERATURE REVIEW
DOI:
https://doi.org/10.61164/rmnm.v12i5.3339Keywords:
Machine Learning; câncer de mama; diagnóstico precoce; exames de imagem; Convolutional Neural Network.Abstract
This work analyzes the use of Machine Learning (ML) in the early diagnosis of breast cancer, focusing on its application in imaging exams. The issue lies in the need to improve the accuracy and efficiency of diagnoses, as breast cancer, being one of the leading causes of death among women, requires early interventions to increase survival rates. The central objective of this study is to evaluate the effectiveness of ML algorithms in detecting subtle patterns in mammographic images, overcoming the limitations of traditional methods, such as mammography, which have high false-positive rates. To achieve this objective, a literature review was conducted, including the analysis of scientific articles and relevant studies in the Google Scholar database. The research highlighted that techniques such as Convolutional Neural Networks (CNNs) demonstrate superior ability in identifying malignant lesions with greater accuracy. The results show that the application of ML can transform clinical practice, enabling more efficient screening and faster diagnoses.
References
Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinformatics, v. 20, n. 1, p. 210, 2019. Disponível em: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2823-4. Acesso em: 03 de nov. de 2024. DOI: https://doi.org/10.1186/s12859-019-2823-4
Arefan, D., Mohamed, A. A., Berg, W. A., Zuley, M. L., Sumkin, J. H., & Wu, S. (2019). Deep learning in medical imaging: A review of algorithms and applications in breast cancer diagnosis. Medical Physics, 46(10), 6172-6186. https://doi.org/10.1002/mp.13886. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1002/mp.13886
Berg, W. A., Blume, J. D., Cormack, J. B., Mendelson, E. B., Lehrer, D., Böhm-Vélez, M., ... & Pisano, E. D. (2008). Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA, 299(18), 2151-2163. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/181896. 12 de nov. de 2024. DOI: https://doi.org/10.1001/jama.299.18.2151
Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., ... & Yaffe, M. J. (2007). Mammographic density and the risk and detection of breast cancer. New England Journal of Medicine, 356(3), 227-236. Disponível em: https://www.nejm.org/doi/full/10.1056/NEJMoa062790. 12 de nov. de 2024. DOI: https://doi.org/10.1056/NEJMoa062790
CARTER, Stacy M.; ROGERS, Wendy; WIN, Khin Than; FRAZER, Helen; RICHARDS, Bernadette; HOUSSAMI, Nehmat. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast, v. 49, p. 25–32, Feb. 2020. Disponível em: https://doi.org/10.1016/j.breast.2019.10.001. Acesso em: 15 de nov. de 2024. DOI: https://doi.org/10.1016/j.breast.2019.10.001
Chaurasia, V., & Pal, S. (2020). Applications of Machine Learning Techniques to Predict Diagnostic Breast Cancer. SN Computer Science, 1(270). Disponível em: https://doi.org/10.1007/s42979-020-00296-8. Acesso em: 15 de nov. de 2024. DOI: https://doi.org/10.1007/s42979-020-00296-8
Egwom, O. J., Hassan, M., Tanimu, J. J., Hamada, M., & Ogar, O. M. (2022). An LDA–SVM Machine Learning Model for Breast Cancer Classification. BioMedInformatics, 2(3), 345-358. Disponível em: https://doi.org/10.3390/biomedinformatics2030022. Acesso em: 21 de nov. de 2024 DOI: https://doi.org/10.3390/biomedinformatics2030022
Heidari, M., Zargari Khuzani, A., Hollingsworth, A. B., Danala, G., Mirniaharikandehei, S., Qiu, Y., Liu, H., & Zheng, B. (2018). Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Physics in Medicine & Biology, 63(3), 035020. Disponível em: https://doi.org/10.1088/1361-6560/aaa1ca. Acesso em: 23 de nov. de 2024 DOI: https://doi.org/10.1088/1361-6560/aaa1ca
Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161. Disponível em: https://doi.org/10.1016/j.eswa.2020.114161. Acesso em: 23 de nov. de 2024 DOI: https://doi.org/10.1016/j.eswa.2020.114161
International Agency for Research on Cancer (IARC). Breast Cancer Fact Sheet. (2020) Disponível em: https://gco.iarc.who.int/media/globocan/factsheets/cancers/20-breast-fact-sheet.pdf. Acesso em: 11 de set. de 2024.
Instituto Nacional de Câncer. (2023). Estimativa 2023: Incidência de Câncer no Brasil. Rio de Janeiro: INCA. Disponível em: https://www.inca.gov.br/publicacoes/livros/estimativa-2023-incidencia-de-cancer-no-brasil. Acesso em: 11 de set. de 2024.
Jasti, V. D. P., Zamani, A. S., Arumugam, K., Naved, M., Pallathadka, H., Sammy, F., Raghuvanshi, A., & Kaliyaperumal, K. (2022). Computational Technique Based on Machine Learning and Image Processing for Medical Image Analysis of Breast Cancer Diagnosis. Security and Communication Networks, 2022, Article ID 1918379. Disponível em: https://doi.org/10.1155/2022/1918379. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1155/2022/1918379
Koh, D.-M., Papanikolaou, N., Bick, U., Illing, R., Kahn, C. E. Jr., Kalpathi-Cramer, J., Matos, C., Martí-Bonmatí, L., Miles, A., Mun, S. K., Napel, S., Rockall, A., Sala, E., Strickland, N., & Prior, F. (2022). Artificial intelligence and machine learning in cancer imaging. Communications Medicine, 2, 133. Disponível em: https://doi.org/10.1038/s43856-022-00199-0. Acesso em: 23 de nov. de 2024 DOI: https://doi.org/10.1038/s43856-022-00199-0
Lehman, C. D., Wellman, R. D., & Buist, D. S. (2015). Diagnostic Accuracy of Digital Screening Mammography with and without Computer-Aided Detection. JAMA Internal Medicine, 175(3), 394-401. Disponível em: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2443369. Acesso em: 12 de nov. de 2024.
Lehman, C. D., Mercaldo, S., Lamb, L. R., King, T. A., Ellisen, L. W., Specht, M., & Tamimi, R. M. (2022). Artificial intelligence for breast cancer diagnosis: Current applications and future directions. JNCI: Journal of the National Cancer Institute, 114(10), 1355-1363. Disponível em: https://doi.org/10.1093/jnci/djac142. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1093/jnci/djac142
McKinney, S. M., Sieniek, M., & Godbole, V. (2020). International Evaluation of an AI System for Breast Cancer Screening. Nature, 577(7788), 89-94. Disponível em: https://www.nature.com/articles/s41586-019-1799-6. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1038/s41586-019-1799-6
Mann, R. M., Cho, N., & Moy, L. (2019). Breast MRI: State of the Art. Radiology. Disponível em: https://doi.org/10.1148/radiol.2019182947. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1148/radiol.2019182947
NAJI, Mohammed Amine; EL FILALI, Sanaa; AARIKA, Kawtar; BENLAHMAR, EL Habib; AIT ABDELOUHAHID, Rachida; DEBAUCHÉ, Olivier. Machine Learning Algorithms for Breast Cancer Prediction and Diagnosis. Procedia Computer Science, v. 191, p. 487–492, 2021. Disponível em: https://doi.org/10.1016/j.procs.2021.07.062. Acesso em: 24 de nov. de 2024. DOI: https://doi.org/10.1016/j.procs.2021.07.062
Reig, B., Heacock, L., Geras, K. J., & Moy, L. (2019). Machine learning in breast MRI. Journal of Magnetic Resonance Imaging, 50(1), 1-18. Disponível em: https://doi.org/10.1002/jmri.26852. Acesso em: 23 de nov. de 2024. DOI: https://doi.org/10.1002/jmri.26852
SHRAVYA, Ch.; PRAVALIKA, K.; SUBHANI, Shaik. Prediction of Breast Cancer Using Supervised Machine Learning Techniques. International Journal of Innovative Technology and Exploring Engineering (IJITEE), v. 8, n. 6, p. 1106, abr. 2019. Disponível em: https://www.academia.edu/download/79315323/F3384048619.pdf. Acesso em: 23 de nov. de 2024.
Sociedade Brasileira de Mastologia. (2023). A importância da mamografia no rastreamento do câncer de mama. São Paulo: SBM. Disponível em: https://www.sbmastologia.com.br/sociedades-medicas-brasileiras-recomendam-mamografia-anual-a-partir-dos-40-anos/. Acesso em: 03 de nov. de 2024.
World Health Organization. (2024). Breast cancer. Geneva: WHO. Disponível em: https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Acesso em: 03 de nov. de 2024.
Yala, A., Lehman, C., Schuster, T., Portnoi, T., & Barzilay, R. (2019). A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, 291(2), 532-540. Disponível em: https://doi.org/10.1148/radiol.2019182716. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1148/radiol.2019182716
Yala, A., Schuster, T., Miles, R., Barzilay, R., & Lehman, C. (2019). Artificial intelligence in breast cancer screening: A collaborative study. Radiology, 291(3), 682-690. Disponível em: https://doi.org/10.1148/radiol.2019182908. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1148/radiol.2019182908
Yue, W., Wang, Z., Chen, H., Payne, A., & Liu, X. (2018). Machine Learning with Applications in Breast Cancer Diagnosis and Prognosis. Designs, 2(2), 13. Disponível em: https://doi.org/10.3390/designs2020013. Acesso em: 23 de nov. de 2024. DOI: https://doi.org/10.3390/designs2020013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Multidisciplinar do Nordeste Mineiro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.