THE USE OF MACHINE LEARNING IN THE EARLY DIAGNOSIS OF BREAST CANCER THROUGH IMAGING EXAMS: A LITERATURE REVIEW

Authors

  • Sandro Junior Santos da Silva Universidade do Estado de Mato Grosso - Campus Universitário de Barra do Bugres
  • Rodrigo Fernando Shimazu Universidade do Estado de Mato Grosso. Campus Universitário de Barra do Bugres, Brasil
  • Raquel Da Silva Vieira Coelho Universidade do Estado de Mato Grosso. Campus Universitário de Barra do Bugres, Brasil

DOI:

https://doi.org/10.61164/rmnm.v12i5.3339

Keywords:

Machine Learning; câncer de mama; diagnóstico precoce; exames de imagem; Convolutional Neural Network.

Abstract

This work analyzes the use of Machine Learning (ML) in the early diagnosis of breast cancer, focusing on its application in imaging exams. The issue lies in the need to improve the accuracy and efficiency of diagnoses, as breast cancer, being one of the leading causes of death among women, requires early interventions to increase survival rates. The central objective of this study is to evaluate the effectiveness of ML algorithms in detecting subtle patterns in mammographic images, overcoming the limitations of traditional methods, such as mammography, which have high false-positive rates. To achieve this objective, a literature review was conducted, including the analysis of scientific articles and relevant studies in the Google Scholar database. The research highlighted that techniques such as Convolutional Neural Networks (CNNs) demonstrate superior ability in identifying malignant lesions with greater accuracy. The results show that the application of ML can transform clinical practice, enabling more efficient screening and faster diagnoses.

 

References

Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinformatics, v. 20, n. 1, p. 210, 2019. Disponível em: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2823-4. Acesso em: 03 de nov. de 2024. DOI: https://doi.org/10.1186/s12859-019-2823-4

Arefan, D., Mohamed, A. A., Berg, W. A., Zuley, M. L., Sumkin, J. H., & Wu, S. (2019). Deep learning in medical imaging: A review of algorithms and applications in breast cancer diagnosis. Medical Physics, 46(10), 6172-6186. https://doi.org/10.1002/mp.13886. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1002/mp.13886

Berg, W. A., Blume, J. D., Cormack, J. B., Mendelson, E. B., Lehrer, D., Böhm-Vélez, M., ... & Pisano, E. D. (2008). Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA, 299(18), 2151-2163. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/181896. 12 de nov. de 2024. DOI: https://doi.org/10.1001/jama.299.18.2151

Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., ... & Yaffe, M. J. (2007). Mammographic density and the risk and detection of breast cancer. New England Journal of Medicine, 356(3), 227-236. Disponível em: https://www.nejm.org/doi/full/10.1056/NEJMoa062790. 12 de nov. de 2024. DOI: https://doi.org/10.1056/NEJMoa062790

CARTER, Stacy M.; ROGERS, Wendy; WIN, Khin Than; FRAZER, Helen; RICHARDS, Bernadette; HOUSSAMI, Nehmat. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast, v. 49, p. 25–32, Feb. 2020. Disponível em: https://doi.org/10.1016/j.breast.2019.10.001. Acesso em: 15 de nov. de 2024. DOI: https://doi.org/10.1016/j.breast.2019.10.001

Chaurasia, V., & Pal, S. (2020). Applications of Machine Learning Techniques to Predict Diagnostic Breast Cancer. SN Computer Science, 1(270). Disponível em: https://doi.org/10.1007/s42979-020-00296-8. Acesso em: 15 de nov. de 2024. DOI: https://doi.org/10.1007/s42979-020-00296-8

Egwom, O. J., Hassan, M., Tanimu, J. J., Hamada, M., & Ogar, O. M. (2022). An LDA–SVM Machine Learning Model for Breast Cancer Classification. BioMedInformatics, 2(3), 345-358. Disponível em: https://doi.org/10.3390/biomedinformatics2030022. Acesso em: 21 de nov. de 2024 DOI: https://doi.org/10.3390/biomedinformatics2030022

Heidari, M., Zargari Khuzani, A., Hollingsworth, A. B., Danala, G., Mirniaharikandehei, S., Qiu, Y., Liu, H., & Zheng, B. (2018). Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Physics in Medicine & Biology, 63(3), 035020. Disponível em: https://doi.org/10.1088/1361-6560/aaa1ca. Acesso em: 23 de nov. de 2024 DOI: https://doi.org/10.1088/1361-6560/aaa1ca

Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161. Disponível em: https://doi.org/10.1016/j.eswa.2020.114161. Acesso em: 23 de nov. de 2024 DOI: https://doi.org/10.1016/j.eswa.2020.114161

International Agency for Research on Cancer (IARC). Breast Cancer Fact Sheet. (2020) Disponível em: https://gco.iarc.who.int/media/globocan/factsheets/cancers/20-breast-fact-sheet.pdf. Acesso em: 11 de set. de 2024.

Instituto Nacional de Câncer. (2023). Estimativa 2023: Incidência de Câncer no Brasil. Rio de Janeiro: INCA. Disponível em: https://www.inca.gov.br/publicacoes/livros/estimativa-2023-incidencia-de-cancer-no-brasil. Acesso em: 11 de set. de 2024.

Jasti, V. D. P., Zamani, A. S., Arumugam, K., Naved, M., Pallathadka, H., Sammy, F., Raghuvanshi, A., & Kaliyaperumal, K. (2022). Computational Technique Based on Machine Learning and Image Processing for Medical Image Analysis of Breast Cancer Diagnosis. Security and Communication Networks, 2022, Article ID 1918379. Disponível em: https://doi.org/10.1155/2022/1918379. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1155/2022/1918379

Koh, D.-M., Papanikolaou, N., Bick, U., Illing, R., Kahn, C. E. Jr., Kalpathi-Cramer, J., Matos, C., Martí-Bonmatí, L., Miles, A., Mun, S. K., Napel, S., Rockall, A., Sala, E., Strickland, N., & Prior, F. (2022). Artificial intelligence and machine learning in cancer imaging. Communications Medicine, 2, 133. Disponível em: https://doi.org/10.1038/s43856-022-00199-0. Acesso em: 23 de nov. de 2024 DOI: https://doi.org/10.1038/s43856-022-00199-0

Lehman, C. D., Wellman, R. D., & Buist, D. S. (2015). Diagnostic Accuracy of Digital Screening Mammography with and without Computer-Aided Detection. JAMA Internal Medicine, 175(3), 394-401. Disponível em: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2443369. Acesso em: 12 de nov. de 2024.

Lehman, C. D., Mercaldo, S., Lamb, L. R., King, T. A., Ellisen, L. W., Specht, M., & Tamimi, R. M. (2022). Artificial intelligence for breast cancer diagnosis: Current applications and future directions. JNCI: Journal of the National Cancer Institute, 114(10), 1355-1363. Disponível em: https://doi.org/10.1093/jnci/djac142. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1093/jnci/djac142

McKinney, S. M., Sieniek, M., & Godbole, V. (2020). International Evaluation of an AI System for Breast Cancer Screening. Nature, 577(7788), 89-94. Disponível em: https://www.nature.com/articles/s41586-019-1799-6. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1038/s41586-019-1799-6

Mann, R. M., Cho, N., & Moy, L. (2019). Breast MRI: State of the Art. Radiology. Disponível em: https://doi.org/10.1148/radiol.2019182947. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1148/radiol.2019182947

NAJI, Mohammed Amine; EL FILALI, Sanaa; AARIKA, Kawtar; BENLAHMAR, EL Habib; AIT ABDELOUHAHID, Rachida; DEBAUCHÉ, Olivier. Machine Learning Algorithms for Breast Cancer Prediction and Diagnosis. Procedia Computer Science, v. 191, p. 487–492, 2021. Disponível em: https://doi.org/10.1016/j.procs.2021.07.062. Acesso em: 24 de nov. de 2024. DOI: https://doi.org/10.1016/j.procs.2021.07.062

Reig, B., Heacock, L., Geras, K. J., & Moy, L. (2019). Machine learning in breast MRI. Journal of Magnetic Resonance Imaging, 50(1), 1-18. Disponível em: https://doi.org/10.1002/jmri.26852. Acesso em: 23 de nov. de 2024. DOI: https://doi.org/10.1002/jmri.26852

SHRAVYA, Ch.; PRAVALIKA, K.; SUBHANI, Shaik. Prediction of Breast Cancer Using Supervised Machine Learning Techniques. International Journal of Innovative Technology and Exploring Engineering (IJITEE), v. 8, n. 6, p. 1106, abr. 2019. Disponível em: https://www.academia.edu/download/79315323/F3384048619.pdf. Acesso em: 23 de nov. de 2024.

Sociedade Brasileira de Mastologia. (2023). A importância da mamografia no rastreamento do câncer de mama. São Paulo: SBM. Disponível em: https://www.sbmastologia.com.br/sociedades-medicas-brasileiras-recomendam-mamografia-anual-a-partir-dos-40-anos/. Acesso em: 03 de nov. de 2024.

World Health Organization. (2024). Breast cancer. Geneva: WHO. Disponível em: https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Acesso em: 03 de nov. de 2024.

Yala, A., Lehman, C., Schuster, T., Portnoi, T., & Barzilay, R. (2019). A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, 291(2), 532-540. Disponível em: https://doi.org/10.1148/radiol.2019182716. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1148/radiol.2019182716

Yala, A., Schuster, T., Miles, R., Barzilay, R., & Lehman, C. (2019). Artificial intelligence in breast cancer screening: A collaborative study. Radiology, 291(3), 682-690. Disponível em: https://doi.org/10.1148/radiol.2019182908. Acesso em: 12 de nov. de 2024. DOI: https://doi.org/10.1148/radiol.2019182908

Yue, W., Wang, Z., Chen, H., Payne, A., & Liu, X. (2018). Machine Learning with Applications in Breast Cancer Diagnosis and Prognosis. Designs, 2(2), 13. Disponível em: https://doi.org/10.3390/designs2020013. Acesso em: 23 de nov. de 2024. DOI: https://doi.org/10.3390/designs2020013

Published

2024-12-19

How to Cite

Santos da Silva, S. J. ., Fernando Shimazu, R. ., & Da Silva Vieira Coelho , R. . (2024). THE USE OF MACHINE LEARNING IN THE EARLY DIAGNOSIS OF BREAST CANCER THROUGH IMAGING EXAMS: A LITERATURE REVIEW. Revista Multidisciplinar Do Nordeste Mineiro, 12(5), 1–21. https://doi.org/10.61164/rmnm.v12i5.3339

Similar Articles

You may also start an advanced similarity search for this article.