ASSOCIATION BETWEEN CHITOSAN-BASED BIOMATERIALS AND ESSENTIAL OILS OF Thymus vulgaris L. AND Origanum vulgare L. AS AN ALTERNATIVE TO COMBAT ORAL INFECTIONS
DOI:
https://doi.org/10.61164/rmnm.v14i1.2078Keywords:
Phytotherapy, Biocompatible materials, DentistryAbstract
The characterization, development and biomedical applicability of chitosan-based biomaterials in the regeneration of tissues damaged by disease and/or injury is a growing topic of scientific research. Chitosan is a linear biopolymer, derived from chitin, which has various therapeutic properties, with a strong emphasis on its antimicrobial potential. In addition, this biopolymer can be combined with other drugs that can enhance its pharmacological effects, such as essential oils rich in thymol and carvacrol. The aim of this study was to verify in the literature the efficacy of the association between biomaterials based on chitosan and essential oils from Thymus vulgaris L. and Origanum vulgare L. as an alternative therapy to combat oral infections. This is a narrative literature review with a documentary and observational approach. Several studies available in the literature show that chitosan-based biomaterials impregnated with essential oils potentiate antimicrobial activity against different microorganisms. In addition to promoting synergistic effects when associated with biomaterials, essential oils can cooperate with biopolymers during the manufacture of scaffolds or membranes. In view of the pre-existing literature, it is clear that the association between chitosan-based biomaterials and products of natural origin, such as the essential oils of Thymus vulgaris L. and Origanum vulgare L., could be an important alternative in the treatment of oral infections, as this is a low-cost and accessible option.
References
ABOTALEB, M. et al. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, v. 10, p. 221–228, 2020. https://doi.org/10.3390%2Fbiom10020221 DOI: https://doi.org/10.3390/biom10020221
AKKAOUNI, S. et al. Chemical Composition, Antimicrobial activity, In Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans. Pathogens, v. 9, n. 3, p. 192, 2020. https://doi.org/10.3390/pathogens9030192 DOI: https://doi.org/10.3390/pathogens9030192
AMALRAJ, A. et al. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, v. 151, p. 366-375, 2020. https://doi.org/10.1016/j.ijbiomac.2020.02.176 DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.176
AMORESE, V. et al. In vitro activity of essential oils against pseudomonas aeruginosa isolated from infected hip implants. Journal of Infection in Developing Countries, v. 12, p. 996–1001, 2018. https://doi.org/10.3855/jidc.10988 DOI: https://doi.org/10.3855/jidc.10988
ARABACI, T. et al. Homoploid hybrids of Origanum (Lamiaceae) in Turkey: morphological and molecular evidence for a new hybrid. Official Journal of the Societa Botanica Italiana, v. 5, p. 1-18, 2021. https://doi.org/10.1080/11263504.2020.1762777 DOI: https://doi.org/10.1080/11263504.2020.1762777
ARSHAD, N. et al. In vivo screening and evaluation of four herbs against MRSA infections. BMC Complementary Medicine and Therapies, v. 17, p. 1–7, 2017. https://doi.org/10.1186/s12906-017-2001-z DOI: https://doi.org/10.1186/s12906-017-2001-z
BARZEGAR, S. et al. Coreshell chitosan/PVA-based nanofibrous scaffolds loaded with Satureja mutica or Oliveria decumbens essential oils as enhanced antimicrobial wound dressing. International Journal of Pharmaceutics, v. 597, p. 120288, 2021. https://doi.org/10.1016/j.ijpharm.2021.120288 DOI: https://doi.org/10.1016/j.ijpharm.2021.120288
BRONDANI, L. P. et al. Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. Journal of Medical Mycology, v. 28, p. 94–100, 2018. https://doi.org/10.1016/j.mycmed.2017.12.001 DOI: https://doi.org/10.1016/j.mycmed.2017.12.001
ČABARKAPA, I. et al. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling, v. 35, n. 3, p. 361-375, 2019. https://doi.org/10.1080/08927014.2019.1610169 DOI: https://doi.org/10.1080/08927014.2019.1610169
CAVALCANTI, V. H. O. Membranas de quitosana com alginato modificado visando a liberação controlada de sulfadiazina de prata para aplicação em regeneração tecidual. 2023. 46 f. Trabalho de Conclusão de Curso (Graduação em Química) – Instituto de química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara-SP, 2023.
CAVERZAN, J. L. et al. A new phytocosmetic preparation from Thymus vulgaris stimulates adipogenesis and controls skin aging process: in vitro studies and topical effects in a double-blind placebo-controlled clinical. Journal of Cosmetic Dermatology, v.1, p. 1-18, 2020. https://doi.org/10.1111/jocd.13818 DOI: https://doi.org/10.1111/jocd.13818
CHEUNG, R. et al. Chitosan: an update on potential biomedical and pharmaceutical applications. Drugs, v.13, p. 5156-5186, 2015. https://doi.org/10.3390/md13085156 DOI: https://doi.org/10.3390/md13085156
CHOUHAN, S.; SHARMA, K.; GULERIA, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines, v. 4, p. 58, 2017. https://doi.org/10.3390/medicines4030058 DOI: https://doi.org/10.3390/medicines4030058
CONFEDERAT, L. G. et al. Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, v. 26, n. 12, p. 3694, 2021. https://doi.org/10.3390/molecules26123694 DOI: https://doi.org/10.3390/molecules26123694
COSTA, M. F. et al. Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: a systematic review. Journal of Pharmacy and Pharmacolog, v. 71, p. 141-155, 2018. https://doi.org/10.1111/jphp.13054 DOI: https://doi.org/10.1111/jphp.13054
CROISIER, F.; JÉRÔME, C. Chitosan-based biomaterials for tissue engineering. European Polymer Journal, v. 49, n. 4, p. 780-792, 2013. https://doi.org/10.1016/j.eurpolymj.2012.12.009 DOI: https://doi.org/10.1016/j.eurpolymj.2012.12.009
DEPRÉS-TREMBLAY, F. et al. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo. Biomedical Materials, v. 13, n. 1, p. 015005, 2018. https://doi.org/10.1088/1748-605x/aa8469 DOI: https://doi.org/10.1088/1748-605X/aa8469
FADIL, M. et al. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtuscommunis L. essential oils against Salmonella typhimurium: optimization of antibacterial activity by mixture design methodology. European Journal of Pharmaceutics and Biopharmaceutics, v. 126, p. 211-220, 2018. https://doi.org/10.1016/j.ejpb.2017.06.002 DOI: https://doi.org/10.1016/j.ejpb.2017.06.002
FANI, M. et al. In Vitro Antimicrobial Activity of Thymus vulgaris Essential Oil Against Major Oral Pathogens. Evidence-Based Complementary and Alternative Medicine, v. 7, p. 1-17, 2017. https://doi.org/10.1177%2F2156587217700772
FRATINI, F. et al. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiological Research, v. 195, p. 11-17, 2017. https://doi.org/10.1016/j.micres.2016.11.005 DOI: https://doi.org/10.1016/j.micres.2016.11.005
GALOVIČOVÁ, L. et al. Thymus vulgaris Essential Oil and Its Biological Activity. Plants, v. 10, p. 19-59, 2021. https://doi.org/10.3390/plants10091959 DOI: https://doi.org/10.3390/plants10091959
GNAT, S. et al. Antimicrobial activity of some plant extracts against bacterial pathogens isolated from faeces of red deer (Cervuselaphus). Polish Journal of Veterinary Sciences, v. 20, p. 697-706, 2017. https://doi.org/10.1515/pjvs-2017-0087
GYÖRGY, Z.; INCZE, N.; PLUHÁR, Z. Differentiating Thymus vulgaris chemotypes with ISSR molecular markers. Biochemical Systematics and Ecology, v. 92, p. 104-118, 2020. https://doi.org/10.1016/j.bse.2020.104118 DOI: https://doi.org/10.1016/j.bse.2020.104118
HOLZAPFEL, B. M.; RUDERT, M.; HUTMACHER, D. W. Gerüstträgerbasiertes Knochen-Tissue-Engineering [Scaffold-based Bone Tissue Engineering]. Orthopade, v. 46, n. 8, p. 701-710, 2017. https://doi.org/10.1007/s00132-017-3444-0 DOI: https://doi.org/10.1007/s00132-017-3444-0
JARIC, S.; MITROVIC, M.; PAVLOVIC, P. Review of Ethnobotanical, Phytochemical, and Pharmacological Study of Thymus serpyllum L. Evidence-Based Complementary and Alternative Medicine, v. 10, p. 1–10, 2015. https://doi.org/10.1155/2015/101978 DOI: https://doi.org/10.1155/2015/101978
JENNINGS J. A.; BUMGARDNER J. D. Chitosan Based Biomaterials, Tissue Engineering and Therapeutics. United Kingdom: Woodhead Publishing, v. 2, 2016.
KHAN, S. T. et al. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express, v. 7, n. 1, p. 49, 2017. https://doi.org/10.1186/s13568-017-0344-y DOI: https://doi.org/10.1186/s13568-017-0344-y
KUETE, V. Thymous vulgaris. In: ____. (org.). Medicinal Spices and Vegetables from Africa. Elsevier Inc., 2017. p. 599–609. DOI: https://doi.org/10.1016/B978-0-12-809286-6.00028-5
LINO, A. S. D. Efecto del tomillo (Thymus vulgaris) en la cicatrización de heridas cutaneas inducidas en cuyes, Huanuco. 2021. 120 f. Trabalho de Conclusão de Curso (Graduação em Medicina Veterinária) – Universidade Nacional Hermilio Valdizán, Faculdade de Medicina Veterinária e Zootecnia, Huanuco, Peru, 2021.
LIU, Q. et al. Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections. Current Dermatology Reports, v. 7, p. 338–349, 2018. https://doi.org/10.1007/s13671-018-0235-8 DOI: https://doi.org/10.1007/s13671-018-0235-8
LIU, X. C. et al. Curcuminreleasing chitosan/aloe membrane for skin regeneration. Chemical Engineering Journal, v. 359, p. 1111-1119, 2019. https://doi.org/10.1016/j.cej.2018.11.073 DOI: https://doi.org/10.1016/j.cej.2018.11.073
LOMBREA, A. et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. International Journal of Molecular Sciences, v. 21, p. 53-96, 2020. https://doi.org/10.3390/ijms21249653 DOI: https://doi.org/10.3390/ijms21249653
MADNI, A. et al. Fabrication and characterization of chitosan-vitamin C-lactic acid composite membrane for potential skin tissue engineering. International Journal of Polymer Science, p. 1-8, 2021. https://doi.org/10.1155/2019/4362395 DOI: https://doi.org/10.1155/2019/4362395
MAHBOUBI, M. et al. Antimicrobial activity and chemical composition of Thymus species and Zataria multiflora essential oils. Agriculture and Natural Resources, v. 51, p. 395–401, 2017. https://doi.org/10.1016/j.anres.2018.02.001 DOI: https://doi.org/10.1016/j.anres.2018.02.001
MALACARA, K. D. P.; URENDA, M. A. O.; ARROCENA, M. C. A. Antimicrobial effectiveness of chitosan as a suture coating in oral and maxillofacial surgery: a systematic review. Odontoestomatologia, v. 24, p. 1-12, 2022. https://doi.org/10.22592/ode2022n40e317 DOI: https://doi.org/10.22592/ode2022n40e317
MANDAL, S.; DEBMANDAL, M. Thyme (Thymus vulgaris L.) oils. In: PREEDY, V. (Ed.). Essential Oils in Food Preservation, Flavor and Safety. London: Academic Press, 2016. p. 825-834. DOI: https://doi.org/10.1016/B978-0-12-416641-7.00094-8
MATICA, M. A. et al. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences, v. 20, n. 23, p. 5889, 2019. https://doi.org/10.3390/ijms20235889 DOI: https://doi.org/10.3390/ijms20235889
MEDEIROS, L. A. D. M. et al. Esferas de quitosana/D. ambrosioides (mastruz) para aplicação como biomaterial. Revista Brasileira de Odontologia, v. 73, n. 2, 124-129, 2016. DOI: https://doi.org/10.18363/rbo.v73n2.p.124
MORAES, P. C. et al. Repair of Bone Defects with Chitosan-Collagen Biomembrane and Scaffold Containing Calcium Aluminate Cement. Brazilian Dental Journal, v. 28, n. 3, p. 287-295, 2017. https://doi.org/10.1590/0103-6440201601454 DOI: https://doi.org/10.1590/0103-6440201601454
MOUSSA, D. G.; APARICIO, C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. Journal of Tissue Engineering and Regenerative Medicine, v. 13, n. 1, p. 58-75, 2019. https://doi.org/10.1002/term.2769 DOI: https://doi.org/10.1002/term.2769
NICOLOSI, J. G.; MORAES, A. M. Biomateriais destinados à terapia de queimaduras: estudo entre o custo e o potencial de efetividade de curativos avançados. VI Congresso Brasileiro de Engenharia Química em Iniciação Científica. 2005.
OK, E.; ADANIR, N.; HAKKI, S. Comparison of cytotoxicity of various concentrations origanum extract solution with 2% chlorhexidine gluconate and 5.25% sodium hypochlorite. European Journal of Dentistry, v. 9, n. 1, p. 6-10, 2015. https://doi.org/10.4103/1305-7456.149630 DOI: https://doi.org/10.4103/1305-7456.149630
ONINGA, I. et al. Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules, v. 23, p. 23-77, 2018. https://doi.org/10.3390/molecules23082077 DOI: https://doi.org/10.3390/molecules23082077
PARETSIS. N. F. et al. Avaliação histológica e histomorfométrica da regeneração óssea a partir da utilização de biomateriais em tíbias de ovinos. Pesquisa Veterinária Brasileira, v. 37, n. 12, p. 1537-1544, 2017. https://doi.org/10.1590/S0100-736X2017001200029 DOI: https://doi.org/10.1590/s0100-736x2017001200029
PATIL, S. M. et al. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon, v. 7, e07054, 2021. https://doi.org/10.1016/j.heliyon.2021.e07054 DOI: https://doi.org/10.1016/j.heliyon.2021.e07054
PEREIRA, H. F. et al. Scaffolds and coatings for bone regeneration. Journal of Materials Science: Materials in Medicine, v. 31, n. 3, p. 1-27, 2020. https://doi.org/10.1007/s10856-020-06364-y DOI: https://doi.org/10.1007/s10856-020-06364-y
PEZZANI, R.; VITALINI, S.; IRITI, M. Bioactivities of Origanum vulgare L.: an update. Phytochemistry Reviews, v. 16, p. 1253-68, 2017. DOI: https://doi.org/10.1007/s11101-017-9535-z
RAGI, J. et al. Oregano extract ointment for wound healing: a randomized, double-blind, petrolatumcontrolled study evaluating efficacy. Journal of Drugs in Dermatology, v. 10, p.1168-72, 2011.
RASH, H. et al. Um estudo in vitro para avaliar o efeito antibacteriano óleo essencial de Thymus Vulgaris Contra Porphyromonas Gingivalis em Curdistão-Iraque. Jornal Indiano de Medicina Forense e Toxicologia, v. 14, n. 3, p.1289-1296, 2020.
REN, Q. et al. Fabrication of super-hydrophilic and highly openporous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. International Journal of Biological Macromolecules, v. 205, p. 740-748, 2022. https://doi.org/10.1016/j.ijbiomac.2022.03.107 DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.107
RIAZ RAJOKA, M. S. et al. Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Critical Reviews in Biotechnology, v. 40, n. 3, p. 365-379, 2020. https://doi.org/10.1080/07388551.2020.1713719 DOI: https://doi.org/10.1080/07388551.2020.1713719
RODRÍGUEZ-VÁZQUEZ, M. et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International, v. 2, p. 1-12, 2015. https://doi.org/10.1155/2015/821279 DOI: https://doi.org/10.1155/2015/821279
ROLLIM, V. M. et al. Comportamento de diferentes tipos de membranas de quitosana implantadas em equinos. Pesquisa Veterinária Brasileira, v. 39, n. 10, p. 837-842, 2019. https://doi.org/10.1590/1678-6160-PVB-6314 DOI: https://doi.org/10.1590/1678-6160-pvb-6314
ROSENDO, R. A. Desenvolvimento e caracterização de scaffolds de quitosana/Cissus verticillata (L.) Nicolson& C.E. Jarvis. 2016. 161 f. Tese (Doutorado em Engenharia de Materiais) – UFCG, Campina Grande, 2016.
ROSENDO, R. A. et al. Estruturas de quitosana utilizadas para regeneração óssea in vivo:uma revisão de literatura. Research, Society and Development, v. 9, n.7, e891974538, 2020. http://dx.doi.org/10.33448/rsd-v9i7.4538 DOI: https://doi.org/10.33448/rsd-v9i7.4538
SANTOS, E. P. et al. Chitosan/essential oils formulations for potential use as wound dressing: physical and antimicrobial properties. Materials, v. 12, n. 14, p. 2223, 2019. https://doi.org/10.3390/ma12142223 DOI: https://doi.org/10.3390/ma12142223
SANTOS, R. et al. Óleo essencial de Thymus vulgaris: elaboração de enxaguatório bucal e avaliação do efeito in vitro na formação da placa bacteriana. Latin American Journal of Pharmacy, v. 29, n. 6, p. 941-947, 2010.
SHARIATINIA, Z. Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, v. 263, p. 131-194, 2019. https://doi.org/10.1016/j.cis.2018.11.008 DOI: https://doi.org/10.1016/j.cis.2018.11.008
SHARIFI-RAD, M. et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytochemistry Reviews, v. 35, p. 95–121, 2020. https://doi.org/10.1002/ptr.6785 DOI: https://doi.org/10.1002/ptr.6785
SOLTANI, S. et al. A Review of the Phytochemistry and Antimicrobial Properties of Origanum vulgare L. and Subspecies. Iranian Journal of Pharmaceutical Research, v. 20, p. 268–285, 2021. https://doi.org/10.22037/ijpr.2020.113874.14539
SOUZA, A. P. C. Síntese e caracterização de scaffolds porosos e membranas de Quitosana-Xantana associados a nanocompósitos de Hidroxiapatita-Óxido de Grafeno para regeneração tecidual. 2022. 70 f. Dissertação (Mestrado em Materiais Dentários) – Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba-SP, 2022.
SULTANKULOV, B. et al. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules, v. 9, n. 9, p. 470, 2019. https://doi.org/10.3390/biom9090470 DOI: https://doi.org/10.3390/biom9090470
TADA, A. et al. Effect of thymoquinone on Fusobacterium nucleatum‑associated biofilm and inflammation. Molecular Medicine Reports, v. 22, n. 2, p. 643-650, 2020. https://doi.org/10.3892/mmr.2020.11136 DOI: https://doi.org/10.3892/mmr.2020.11136
TIWARI, G. et al. Antimicrobial efficacy of essential oils from commercially available plants with calcium hydroxide as intracanal drugs against Enterococcus faecalis: an in vitro study. Jornal de Ciências Odontológicas e Médicas, v. 17, n. 6, p. 19-24, 2018.
TORRES, J. L.M. et al. Antibacterial Potential of Chitosan ScaffoldsIncorporated with Oregano and Thyme EssentialOils againstEscherichia coli. European Journal of Medical and Health Sciences, v. 5, n. 6, 28-32, 2023. https://doi.org/10.24018%2Fejmed.2023.5.6.1927 DOI: https://doi.org/10.24018/ejmed.2023.5.6.1927
TORRES, J. L. M.; GUÊNES, G. T.; GUÊNES, G. M. T. Aplicabilidade da fitoterapia no tratamento de infecções orais causadas por Escherichia coli e Enterococcus faecalis. Revista Multidisciplinar do Nordeste Mineiro, v. 13, n. 1, p. 1-14, 2023. https://doi.org/10.61164/rmnm.v13i1.1865 DOI: https://doi.org/10.61164/rmnm.v13i1.1865
VOUILLAMOZ, J. F.; CHRIST, B. Thymus vulgaris L.: Tomilho. In: NOVAK, V.; BLÜTHNER, W. D. (Eds.). Plantas medicinais, aromáticas e estimulantes. Springer, 2020. p. 547-557. DOI: https://doi.org/10.1007/978-3-030-38792-1_18
WASUPALLI, G. K.; VERMA, D. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate-based polyelectrolyte complexes. International Journal of Biological Macromolecules, v. 114, n. 4, p. 10-17, 2018. https://doi.org/10.1016/j.ijbiomac.2018.03.075 DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.075
WIJESUNDARA, N. M.; RUPASINGHE, H. V. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microbial Pathogenesis, v. 117, p. 118-27, 2018. https://doi.org/10.1016/j.micpath.2018.02.026 DOI: https://doi.org/10.1016/j.micpath.2018.02.026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Multidisciplinar do Nordeste Mineiro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.