INCREASE IN BACTERIAL RESISTANCE IN AQUACULTURE

POSSIBLE ALTERNATIVES TO ANTIBIOTIC THERAPY

Authors

  • Daniela Lopes de Aguiar Fundação Técnico-Educacional Souza Marques
  • Líllian Oliveira Pereira da Silva Escola Nacional de Saúde Pública Sérgio Arouca, Fundação Oswaldo Cruz

DOI:

https://doi.org/10.61164/rmnm.v12i1.1702

Keywords:

Antimicrobials, Aquaculture, Bacterial resistance

Abstract

Aquaculture aims at the production and industrialization of fish for subsequent human consumption, without the need to remove these animals from their natural environment. However, the treatment of these fish, at it is done with antimicrobials used in humans, can have an impact on public health, favoring the selection of resistant bacteria capable of infecting humans. Therefore, it was verified the importance of carrying out a bibliographic review on the subject, highlighting the impact of the indiscriminate use of antimicrobials in aquaculture, relating it to the increase of antimicrobial resistant bacteria, in addition to the association of such resistant bacteria with the emergence of zoonoses, mainly caused by bacteria of the genus Aeromonas sp.  and of the order Enterobacterales, emphasizing the importance of applying methodologies that can replace antibiotic therapy for the control of infections in aquaculture. The results showed that there are measures that can be used, such as the use of prebiotics, probiotics, symbiotics, herbal medicines, vaccines and the use of genetically modified individuals. These are reinforced to replace or reduce the use of antimicrobials, seeking to minimize the advance of bacterial resistance and its long-term effects on both the environment and fish consumers.

References

ABP - Associação Brasileira de Psicultura. Anuário Brasileiro da Piscicultura Peixe BR 2019. São Paulo; Disponível em: https://www.peixebr.com.br/anuario-2020/ Acesso em: 09 jun. 2022.

Abebe E. et al. Review on Major Food-Borne Zoonotic Bacterial Pathogens. Journal of Tropical Mededicine; 2020: 4674235, 2020.

Adeoye A. A. et al. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, [s.l.], v. 463, p.61-70, 2016.

Allameh, S. K. et al. Effects of probiotic bacteria on fish performance. Advanced Techniques in Clinical Microbiology, v. 1, n. 2, p. 11, 2017.

Ahmed A. M. et al. Seafood as a reservoir of Gram-negative bacteria carrying integrons and antimicrobial resistance genes in Japan. Biomed Environ Sci, v. 28, n.12, p.924-927, 2015.

Amaral S. M. B. et al. Panorama dos surtos de doenças transmitidas por alimentos no Brasil no período de 2009 a 2019. Revista Científica Multidisciplinar, v. 2, n. 11, 2021.

Anselmo D. B. et al. Ocorrência de Escherichia coli e Staphylococcus aureus resistentes a antimicrobianos e parasitos Entamoeba coli e Ascaris lumbricoides em merendas escolares. Rev Inst Adolfo Lutz, v. 74 n. 4, p.399-409, 2015.

Ariede, R. B. et al. Microsatellites associated with growth performance and analysis of resistance to Aeromonas hydrophila in tambaqui Colossoma macropomum. Frontiers in genetics, v.9, p.3. 2018.

Ariede, R. B. et al. Genetic (co) variation between resistance to Aeromonas hydrophila and growth in tambaqui (Colossoma macropomum). Aquaculture, v.523, p.735225. 2020.

Barreira E. R. et al. Meningite por Enterobacter Sakazakii em recém-nascido: relato de caso, Pediatria, São Paulo, v. 25, p. 65 – 70, 2003.

Bengtsson-Palme J. et al. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. v.42, n.1, p. 68-80, 2018.

Berendonk T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 13(5): 310-317, 2015.

Bøgwald, J. et al. Review on immersion vaccines for fish: An update 2019. Microorganisms, v.7, n,12, p.627, 2019.

Broughton E. I. et al. Policies and practices for aquaculture food safety in China. Food Policy, v. 35, n. 5, p. 471-478, 2010.

Cantas L. et al. Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiology. BioMed Central Ltd, v. 12, n. 1, p.37, 2012.

Camou T. et al. Alarma por la resistencia a antimicrobianos: situación actual y desafíos. Rev. Méd. Urug, v.33 n.4, p.104-127, 2017.

Cardoso, S. U. et al. Avaliação in vitro de quimioterápicos e fitoterápicos no controle de argulus sp. Brazilian Journal of Development, v.6, n.2, p. 5797-5808, 2020.

Carvalho J. J. V., et al. Bactérias multirresistentes e seus impactos na saúde pública: Uma responsabilidade social. Research, Society and Development, v.10, n.6, p.e58810616303-e58810616303, 2021.

Cerezuela R. et al. Enrichment of gilthead seabream (Sparusaurata L.) diet with palm fruit extracts and probiotics: Effects on skin mucosal immunity. Fish & Shellfish Immunology, [s.l.], v. 49, p.100-109, 2016.

Chen D. et al. Characterization of carbapenem‐resistant Klebsiella pneumoniae in a tertiary hospital in Fuzhou, China. Journal of Applied Microbiology, v. 129, n.5, p.1220-1226, 2020.

Chideroli, R. T. et al. Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus agalactiae in fish farms from Brazil. Aquaculture, v.479, p.45-51, 2017.

Corral, A.C.T. et al. Control of Hysterothylacium sp. (Nematoda: Anisakidae) in juvenile pirarucu (Arapaima gigas) by the oral application of essential oil of Piper aduncum. Aquaculture, v. 494, p. 37–44, 2018

Dias D. C.G. et al. Probióticos, prebióticos e simbióticos em uso clínico: Uma revisão sistemática Probiotics, prebiotics and symbiotics in clinical use: A systematic. Brazilian Journal of Health Review, v.4, n.4, p. 18276-18287, 2021.

Dias, S.C. Influência de um sistema de produção de pescado na resistência de Escherichia coli aos antimicrobianos. Botucatu. Dissertação (Mestrado) - Faculdade de Medicina Veterinária e Zootecnia, Campus de Botucatu, Universidade Estadual Paulista, p. 66, 2021

EFSA. European Food Safety Authority. BIOHAZ. Biological Hazards. Panel membres: Allende A, Alvarez‐Ordóñez A, Bolton D, et al. Public health risks associated with foodborne parasites. EFSA J; 16e05495, 2018.

ECDC (European Centre for Disease Prevention and Control), EFSA (Euro pean Food Safety Authority), and EMA (European Medicines Agency). ECDC/ EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA Journal, v. 15, n. 7, p.135, 2017.

EMA/AMEG (European Medicines Agency - Antimicrobial Advice Ad Hoc Expert Group). Answers to the requests for scientific advice on the impact on public health and animal health of the use of antibiotics in animals, 2014. Disponível em: <http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/07/WC500170253.pdf>. Acesso em: 8 de fev. 2022.

Evenhuis, J. P. et al. Rainbow trout (Oncorhynchus mykiss) resistance to columnaris disease is heritable and favorably correlated with bacterial cold water disease resistance. Journal of animal science, v.93, n.4, p.1546-1554. 2015.

FAO – Food and Agriculture Organization. The state of world fisheries and aquaculture: opportunities and challenges. Rome: FAO, p. 243, 2016.

FAO - Food and Agriculture Organization.The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Rome: FAO 2018. Disponível em: < http://www.fao. org/3/i9540en/I9540EN.pdf>. Acesso em: 8 de fev. 2022.

Gaspar A. F. B. Deteção e quantificação de resíduos de antibióticos em Salmão do Atlântico (Salmo salar) proveniente de aquacultura. Dissertação do Mestrado em Segurança Alimentar. Faculdade de Farmácia da Universidade de Coimbra, 2018.

Gastalho S. et al. Uso de antibióticos em aquacultura e resistência bacteriana: Impacto em saúde pública. Acta Farmacêutica Portuguesa, v. 3, n.1, p. 29-45, 2014.

Goiozo, P.F.I. Saúde Única: iniciativas dos acadêmicos do curso de Medicina Veterinária do UniBrasil. Revista Expressão, v. 9, n. 1, p. 88-91, 2020.

Gonen, S. et al. Mapping and validation of a major QTL affecting resistance to pancreas disease (salmonid alphavirus) in Atlantic salmon (Salmo salar). Heredity, v.115, n.5, p.405-414; 2015.

Gudding, R. et al. A history of fish vaccination: science-based disease prevention in aquaculture. Fish & shellfish immunology, v.35, n.6, p,1683-1688, 2013.

Guidi L. R. et al. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish.Talanta, n.163, p. 85 – 93, 2017.

Hernando-Amado S. et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol, n.4, p.1432-1442, 2019.

Heuer O. E. et al. Human health consequences of use of antimicrobial agents in aquaculture. Clinical infectious diseases: an official publication of the Inf Dis. Soc. Am, v. 49, n.8, p.1248–53, 2009.

Hickey, J. M. et al. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature genetics, v.49, n.9, p.1297, 2017.

Kareb O. et al. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: a Critical Review. Probiotics Antimicrob Proteins. Probiotics and Antimicrobial Proteins, p.1–22, 2018.

Kotzent, S. et al. Probiotic potential of autochthonous bacteria from tambaqui Colossoma macropomum. Aquaculture Research, v.52, n.5, p.2266-2275. 2021.

LaFrentz, B. R. et al. Controlled challenge experiment demonstrates substantial additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae. Aquaculture, v.458, p.134-139. 2016.

Lynch J. P. et al. Evolution of antimicrobial resistance among Enterobacte-riaceae (focus on extended spectrum b-lactamases and carbapenemases). Opin. Pharmacotherapy, p. 199–210, 2013.

Longhi, E. et al. E. Avaliação da eficácia de vacina autóctone de Streptococcus agalactiae inativado aplicada por banho de imersão em tilápia do Nilo (Oreochromis niloticus). Semina: Ciências Agrárias, v.33, n.2, p.3191-3200, 2012.

Loureiro R. et al. O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Rev. Port. Sau, v.34, n.1, p.77-84, 2016.

Mastrochirico-Filho, V. A. et al. Development of a SNP linkage map and genome-wide association study for resistance to Aeromonas hydrophila in pacu (Piaractus mesopotamicus). BMC genomics, v.21, n.1, p.1-13. 2020.

Masson L. C. et al. Diagnóstico laboratorial das infecções urinárias: relação entre a urocultura e o EAS. Revista Brasileira de Análises Clínicas, [SL], v.52, n.1, p.77-81, 2020.

Miani V. B. L. Vacina e peixes resistentes à Streptococcus agalactiae sorotipo Ib realmente garantem maior sobreviência da tilápia-do-Nilo?.Dissertação apresentada ao programa de Pós-graduação em Aquicultura, do centro de Aquicultura da Unesp- CAUNESP, São Paulo, 2022.

Michelim L. Abordagem biotecnológica em Proteus mirabilis. Tese de doutorado. Universidade Caxias do Sul. Instituto de Biotecnologia, 2014.

Miranda C. D. et al. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front Microbiol, v. 9, p.1284, 2018.

Montezzi L. F. et al. Occurrence of carbapenemase-producing bacteria in coastal recreational waters. Int. J. Antimicrob. Agents, v.45, p.174-177, 2015.

Munir M. B. et al. Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channastriata) fingerlings. Aquaculture, [s.l.], v.460, p.59- 68, 2016.

Nordmann, P. et al. Global spread of carbapenemase-producing Enterobacteriaceae. Emerging infectious diseases, v,17, n.10, p.1791, 2011.

Nath A. et al. Biological activities of lactose-derived prebiotics and symbiotic with probiotics on gastrointestinal system. Med, v.54, n.2, 2018.

Odeyemi O. A. et al. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J Biol Sci, v. 24 n.1, p.65-70, 2017.

OMS (Organização mundial de saúde). Antimicrobial Resistance. Global Report on Surveillanc. Disponível em <http://www.who.int/drugresistance/documents/surveillancereport/en/>. Acesso em: 8 de fev. 2022.

OpenWho. One Health for Global Health Security: Improving multisectoral coordination in countries. World Health Organization. 2023. Disponível em: https://openwho.org/channels/onehealth?locale=pt-BR. Acesso em 14 jun 2023.

Pandiyan P. et al. Probiotics in aquaculture. Drug Invention Today, v. 5, n. 1, p. 55-59, 2013.

Pereira I. C. G. et al. Ambiente marinho e resistência bacteriana aos antimicrobianos: impacto à saúde humana. Acta Scientiae et Technicae, v. 7, n. 2, p. 65-80, 2020.

Pruden A. et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect, n.121 v.8, p.878-885, 2013.

Read P. et al. Management of environmental impacts of marine aquaculture in Europe. Aquaculture, v.226, n. 1-4, p.139–63, 2003.

Santos L. et al. Detection and Quantification of 41 Antibiotic Residues in Gilthead Sea Bream (Sparus aurata) From Aquaculture Origin, Using a Multiclass and Multi-residue UHPLC-MS/MS Method. Food Analytical Methods, v.9, n.10, p. 2749–2753, 2016.

Santos L. A contribuição da aquacultura para a emergência, disseminação e transferência de resistência bacteriana aos antibióticos: origem, potenciadores e soluções. Acta Farmacêutica Portuguesa, v. 8, n. 1, p. 69-80, 2019.

Schalch, S. H. C. et al. Fitoterápicos na Piscicultura: Revisão Comentada. Aquicultura no Brasil, Capitulo 12, p. 237. 2015.

Shoemaker, C. A. et al. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: Is genetic resistance correlated?. Aquaculture, v.468, p,193-198. 2017.

Schwarz K. K. et al. Probiótico, prebiótico e simbiótico na nutrição de alevinos de tilápia do Nilo Oreochromis niloticus. Archives of Veterinary Science, v.21, n.2, 2016.

Sukhavachana, S. et al. Heritability estimates and selection response for resistance to Streptococcus agalactiae in red tilapia Oreochromis spp. Aquaculture, v.502, p.384-390. 2019.

Trevisan C. et al. Foodborne Parasites in Europe: Present Status and Future Trends. Trends in Parasitology; v.35, n.9, p.695-703, 2019.

Valladão, G. M. R. et al. Effects of dietary thyme essential oil on hemato-immunological indices, intestinal morphology, and microbiota of Nile tilapia. Aquaculture International, v.27, n.2, p.399-411. 2019.

Vieira, P. N. et al. Uso irracional e resistência a antimicrobianos em hospitais. Arq. Cienc. Saúde UNIPAR, v.21, n.3, p.209-212, 2017.

Xin R. et al. The pollution level of the blaoxa-58 carbapenemase gene in coastal water and its host bacteria characteristics. Environ Pollut, v.244, p.66-71, 2019.

Who. One Health. World Health Organization. 2017. Disponível em: https://www.who.int/news-room/questions-and-answers/item/one-health. Acesso em 14 jun 2023.

Wonmongkol, P. et al. Genetic parameters for resistance against Flavobacterium columnare in Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of fish diseases, v.4, n.2, p.321-328, 2018.

Yi, Y. et al. Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish & shellfish immunology, n.78, p.322-330, 2018.

Zeng, R. et al. Development of a gene-deleted live attenuated candidate vaccine against fish virus (ISKNV) with low pathogenicity and high protection. Iscience, v.24, n.7, p.102750, 2021.

Published

2023-10-30

How to Cite

Aguiar, D. L. de, & Silva, L. O. P. da. (2023). INCREASE IN BACTERIAL RESISTANCE IN AQUACULTURE: POSSIBLE ALTERNATIVES TO ANTIBIOTIC THERAPY. Revista Multidisciplinar Do Nordeste Mineiro, 12(1). https://doi.org/10.61164/rmnm.v12i1.1702