ANALYSIS OF APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN MATERIAL STORAGE: A BIBLIOGRAPHICAL STUDY

Autores/as

DOI:

https://doi.org/10.61164/rmnm.v2i01.3491

Palabras clave:

Artificial intelligence. Material handling. Smart technologies. Internal logistics. Material logistics.

Resumen

This study aimed to analyze ten publications that portray the application of artificial intelligence in material storage. The conceptual bibliographic method was used in its four stages: a) formulation of primary and accessory research questions, b) data collection in scientific databases, c) analysis and organization of the collected data, and d) generation and interpretation of the answers to the formulated research questions. The results showed that the goals of the studies focused on problematic situations that can be considered complex, the methods of the studies consisted of numerous techniques and procedures, the artificial intelligence tools applied in the studies were varied and in large quantity, and the results and conclusions of the studies show that artificial intelligence is a technology that can effectively solve problems and help to overcome storage challenges. The conclusion points out that the more complex the problem or challenge to be faced, the greater the effectiveness of artificial intelligence in solving or helping to overcome it. The study's main contribution to science highlights the need for logistics and storage professionals to know and know how to apply artificial intelligence in logistics practice.

Biografía del autor/a

Samara da Costa Montenegro, Federal Institute of Education, Science and Technology, Brazil

Degree in Logistics Technology

Jhuly de Souza Veloso, Federal Institute of Education, Science and Technology of Amazonas

Degree in Logistics Technology

Daniel Nascimento-e-Silva, Federal Institute of Education, Science and Technology of Amazonas

Post-Doctorate in Managamente

PhD in Production Engineering

Master in Management

Degree in Management

Citas

ABDOLLAHI, A. et al. Intelligent distributed supply chain management in the pharmaceutical industry. Journal of Strategic Management Studies, v. 14, n. 56, p. 141-167, 2024. https://doi.org/10.22034/smsj.2023.366744.1742.

ALBUQUERQUE, A. S. F. et al. Processo de institucionalização: um estudo sobre a experiência do espaço da cidadania ambiental (ECAM). Review of Research, v. 7, n. 9, p. 1-13, 2018. https://doi.org/10.5281/zenodo.10388272.

ALEXIOU, V. G. et al. Artificial intelligence in diagnosing and managing vascular surgery patients: An experimental study using the GPT-4 Model. Annals of Vascular Surgery, v. 111, p. 260-267, 2025. https://doi.org/10.1016/j.avsg.2024.11.014.

ALMEIDA, A. S. et al. The operational steps of the evaluation processes: a balance of the literature. Research, Society and Development, v. 11, n. 12, p. 1-18, 2022. http://dx.doi.org/10.33448/rsd-v11i12.34288.

AMETBEKOVNA, E. D.; UGLI, M. F. D. Intellectual property and artificial intelligence: Regulatory challenges and solutions. International Journal of Business, Law and Political Science, v. 2, n. 2, p. 9-16, 2025. https://doi.org/10.61796/ijblps.v2i2.265.

AYDIN, B.; İNCE, M. Can artificial intelligence write news: A research on determining the effect of artificial intelligence on news writing practice. Intermedia International E-journal, v. 11, n. 20, p. 24-41, 2024.

AYYILDIZ, E.; ERDOGAN, M.; GUL, M. A comprehensive risk assessment framework for occupational health and safety in pharmaceutical warehouses using Pythagorean fuzzy Bayesian networks. Engineering Applications of Artificial Intelligence, v. 135, p. 108763, 2024. https://doi.org/10.1016/j.engappai.2024.108763.

BARATA, F. A.; FEBRIANTO, G. N.; YASIN, M. Supply chain management strategy in building a competitive advantage through the implementation of logistic 4.0. In: 19th International Symposium on Management (INSYMA 2022). Atlantis Press, 2022. p. 369-377. https://doi.org/10.2991/978-94-6463-008-4_47.

BEINABADI, H. Z.; BARADARAN, V.; KOMIJAN, A. R. Sustainable supply chain decision-making in the automotive industry: A data-driven approach. Socio-Economic Planning Sciences, v. 95, p. 101908, 2024. https://doi.org/10.1016/j.seps.2024.101908.

BRITO, Z. M. et al. Processo gerencial: uma análise para suporte à gestão em uma instituição federal de ensino. In: XVI Colóquio Internacional de Gestión Universitaria – CIGU; Gestión de la Investigación y Compromiso Social de la Universidad, Arequipa, Peru, 23 a 25 de novembro de 2016.

BUCKO, M.; SCHINDLEROVA, V.; SAJDLEROVA, I. Optimisation of the expedition process of shapes in the engineering company. MM Science Journal, (3), 6294-6303, 2023.

ÇELIK, M. T.; ARSLANKAYA, S.; YILDIZ, A. Real-tıme detectıon of plastıc part surface defects usıng deep learnıng-based object detectıon model. Measurement, 235, p. 114975, 2024. https://doi.org/10.1016/j.measurement.2024.114975.

CHOLE, V.; GADICHA, V.; THAWAKAR, M. Evolution of artificial intelligence through game playing in chess. In: GHONGE, M. M. et al. (eds.). Data-driven systems and intelligent applications. Boca Raton: CRC Press, 2024, p. 119-136.

CHOUDHARY, S. Prediction and recognition of drone magnetometer system using artificial intelligence with edge computing. In: 2024 IEEE International Conference on Big Data & Machine Learning (ICBDML). IEEE, 2024. p. 227-233. https://doi.org/10.1109/ICBDML60909.2024.10577328.

COSTA, P. H. D. D. Aumento da eficiência das operações logísticas num armazém de óleos lubrificantes. 2023. 52 p. Dissertação (Mestrado em Logística). Instituto Politécnico do Porto, Porto, 2023.

DANG, R. R. et al. The current landscape of artificial intelligence in oral and maxillofacial surgery–a narrative review. Oral and Maxillofacial Surgery, v. 29, n. 1, p. 1-11, 2025. https://doi.org/10.1007/s10006-025-01334-6.

DEI, H. Artificial intelligence in public administration: benefits and risks. Management (Montevideo), v. 3, p. 137-137, 2025. https://doi.org/10.62486/agma2025137.

DI, H. Design and research of automated warehouse simulation platform based on virtual visualization framework. PeerJ Computer Science, v. 10, p. e1809, 2024. https://doi.org/10.7717/peerj-cs.1809.

EKREN, B. Y.; ARSLAN, B. A reinforcement learning approach for transaction scheduling in a shuttle‐based storage and retrieval system. International Transactions in Operational Research, v. 31, n. 1, p. 274-295, 2024. https://doi.org/10.1111/itor.13135.

EL-TALLAWY, S. N. et al. Incorporation of “artificial intelligence” for objective pain assessment: A comprehensive review. Pain and Therapy, Pain Ther, v. 13, p. 293–317, 2024. https://doi.org/10.1007/s40122-024-00584-8.

FADILA, B. The impact of applying artificial intelligence on the quality of the accounting and auditing profession: A case study of Algeria. International journal of economic perspectives, v. 18, n. 12, p. 2669-2685, 2024.

FERREIRA, C. S. C. Warehouse Management System (WMS) como fator de competitividade: estudo de caso do centro de distribuição do grupo Editorial Plátano. 2021. 54 p. Dissertação (Mestrado em Ciências Empresariais – Ramo Logística). Instituto Politécnico de Setúbal, Setúbal, 2021.

FRANCO, A. F.; FRANCO, A. R; SANCHEZ, A. J. E., GONZALEZ, M. F., RETURETA, L. G. J. Emergent communication in simulated robotics: supporting supply chains through evolutionary computation. Acta universitaria, v. 34, 1-15, 2024. https://doi.org/10.15174/au.2024.3939.

GAO, C.; KEOY, K.-H.; LIM, A.-F. Adoption and impact of generative artificial intelligence on blockchain-enabled supply chain efficiency. Journal of Systems and Information Technology, Vol. ahead-of-print No. ahead-of-print, 2025. https://doi.org/10.1108/JSIT-04-2024-0143.

GHASEMI, S.; KHOSRAVI, H. Artificial intelligence-supported applications in radiotherapy treatment planning and dose optimization. Frontiers in Biomedical Technologies, v. 14, n. 4, p. 692-695, 2024. https://doi.org/10.18502/fbt.v11i4.16518.

GOGGINS, A. Infrastructure, wash practices, and health: A study of rural communities in São Tomé e Príncipe. 2020. 104 p. Dissertação (Mestrado em International Management). Technical University of Liberec, Liberec, Czech Republic, 2022.

HE, H. et al. Machine condition monitoring for defect detection in fused deposition modelling process: a review. The International Journal of Advanced Manufacturing Technology, v. 132, p. 3149–3178, 2024. https://doi.org/10.1007/s00170-024-13630-8.

HE, Y. F. et al. Scheduling analysis of automotive glass manufacturing systems subject to sequence-independent setup time, no-idle machines, and permissive maximum total tardiness constraint. Engineering Applications of Artificial Intelligence, v. 133, p. 108299, 2024. https://doi.org/10.1016/j.engappai.2024.108299.

KAMIL, S.; AL-TURFI, M.; ALMUKHTAR, R. Advancements in chemical materials: Exploring smart storage equipment and protection systems. Journal of Applied Engineering and Technological Science (JAETS), v. 5, n. 2, p. 1086-1101, 2024. https://doi.org/10.37385/jaets.v5i2.4096.

KAPLAN, A. Fast fashion’s fate: Artificial intelligence, sustainability, and the apparel industry. In: Walker, T., Wendt, S., Goubran, S., Schwartz, T. (eds.) Artificial Intelligence for Sustainability. Cham: Palgrave Macmillan, 2024, p. 13-30. https://doi.org/10.1007/978-3-031-49979-1_2

KUMAR, R.; KUMAR, R.; CHAUDHARY, S. Advanced functional nanoparticles "boon or bane" for environment remediation applications: combating environmental issues. Cham: Springer Nature, 2023.

KUPPUSAMY, M. et al. Advanced decision analytics with fuzzy logic integrating AI and computational thinking for personnel selection. Journal of Fuzzy Extension and Applications, v. 5, n. 4, p. 679-699, 2024. https://doi.org/10.22105/jfea.2024.477833.1621.

LUGER, G. F. Artificial intelligence: Principles and practice. Cham: Springer, 2025.

MAJID, Z. A.; RAHMAN, N. A. A.; NUR, N. M. An Insight into Logistics Management and Practices for Non-logistician. In: ISMAIL, A. et al. (eds.). Technological frontiers and sustainable innovations. Cham: Springer Nature Switzerland, 2024, p. 65-72.

NASCIMENTO-E-SILVA, D. et al. Analysis of the effectiveness of the managerial process in a federal institution of education, science and technology in Northern Brazil. Braz. J. of Bus., Curitiba, v. 2, n. 2, p.1420-1440, abr./jun. 2020. https://doi.org/10.34140/bjbv2n2-037.

NASCIMENTO-E-SILVA, D. Manual do método científico-tecnológico: edição sintética. Florianópolis: DNS Editor, 2020.

NASCIMENTO-E-SILVA, D. Handbook of the scientific-technological method: edição sintética. Manaus: DNS Editor, 2021a.

NASCIMENTO-E-SILVA, D. O método científico-tecnológico: fundamentos. Manaus: DNS Editor, 2021b.

NASCIMENTO-E-SILVA, D. O método científico-tecnológico: questões de pesquisa. Manaus: DNS Editor, 2021c.

NASCIMENTO-E-SILVA, D. Metodologia da pesquisa e elaboração de projetos tecnológicos. Manaus: DNS Editor, 2021d.

NASCIMENTO-E-SILVA, D. O método científico-tecnológico: coleta de dados. Manaus: DNS Editor, 2023.

NOZARI, H. et al. Optimizing cold chain logistics with artificial intelligence of things (AIoT): A model for reducing operational and transportation costs. Future Transportation, v. 5, n. 1, p. 1-22, 2025. https://doi.org/10.3390/futuretransp5010001.

NWADINOBI, V. N. et al. The Impact of artificial intelligence on undergraduates’ effectiveness in institutions of higher learning. Educational Administration: Theory and Practice, v. 30, n. 4, p. 6989-6996, 2024. https://doi.org/10.53555/kuey.v30i4.2501.

REIKIN, V. Genesis of conceptual approaches to «logistics» category. Economic journal of Lesya Ukrainka Volyn National University, v. 1, n. 37, p. 6-10, 2024. https://doi.org/10.29038/2786-4618-2024-01-6-10.

SANTOS, O. S. et al. A importância do código de barras na cadeia de suprimento para uma empresa do ramo de fundição. Revista Educação-UNG-Ser, v. 17, n. 2, p. 7-22, 2022. https://doi.org/10.33947/1980-6469-V17N2-4434.

SARHIR, O.; BENMAMOUN, Z.; MAMOUN, M. B. Prediction Analysis for Demand Forcasting in Automotive Industry. In: 2024 10th International Conference on Optimization and Applications (ICOA). IEEE, 2024. p. 1-6. https://doi.org/10.1109/ICOA62581.2024.10754474.

SAVAŞ, A.; BİNİCİ, H. İ. A bibliometric review on food and artificial intelligence. 7th International Anatolian Agriculture, Food, Environment and Biology Congress, Kastamonu/Türkiye, [S. l.], p. 409–413, 2024.

SERVARE JUNIOR, M. W. J. S.; ROCHA, H. R. O.; SALLES, J. L. F. A smart energy scheduling under uncertainties of an iron ore stockyard-port system using a rolling horizon algorithm. Computers & Operations Research, v. 164, p. 106518, 2024. https://doi.org/10.1016/j.cor.2023.106518.

SHAHRIARI, M. Unveiling key drivers of supply chain sustainability in the telecom sector: An information systems perspective. International Journal of Nonlinear Analysis and Applications, v. 16, n. 2, p. 37-49, 2025. http://dx.doi.org/10.22075/ijnaa.2024.33517.4996.

SINGH, G. Adoption of artificial intelligence in marketing: Legal and ethical perspectives. In: MALIK, R.; MALHAN, S.; ARORA, M. (eds.). Neurosensory and neuromarketing impacts on consumer behavior, Hershey: IGI Global, 2024, p. 1-32.

SOFHIA, M.; MANAWAN, J. F. W. M. Raw material weighing application through visual-based RS-232 cable port. Sinkron: jurnal dan penelitian teknik informatika, v. 7, n. 1, p. 590-594, 2023. https://doi.org/10.33395/sinkron.v8i1.12158.

TEDGUE, L. J. et al. Armazenagem e a movimentação de materiais. Revista de Empreendedorismo, Negócios e Inovação, v. 8, n. 1, p. 127-142, 2023. https://doi.org/10.36942/reni.v8i1.640.

TOHIR, M.; PRIMADI, A.; INDAH, D. D. Analysis of logistics technology, logistics infrastructure and quality of logistics services on e-commerce growth. Siber International Journal of Education Technology (SIJET), v. 1, n. 4, p. 129-136, 2024. https://doi.org/10.38035/sijet.v1i4.77.

VELOSO, J. S.; NASCIMENTO-E-SILVA, D. A study on the application of artificial intelligence in material movement based on scientific publications. REMUNOM, v. 1, n. 1, p. 1-13, 2025. https://doi.org/10.61164/rmnm.v1i1.3420.

WAJIYA, F. M.; SALEH, S. H. Integrating artificial intelligence capabilities and organizational maturity on enhancing financial sustainability: A field study in Iraqi telecommunications companies (Zain Iraq and Asia Cell). International Journal of Religion, v. 5, n. 11, p. 431-442, 2024. https://doi.org/10.61707/9b0d2v97.

WANG, H.; XIE, B.; LI, C. Review on operation control of cold thermal energy storage in cooling systems. Energy and Built Environment, In Press, Corrected Proof, 1-15, 2024. https://doi.org/10.1016/j.enbenv.2024.01.007.

WANG, Y. et al. Is it necessary for the supply chain to implement artificial intelligence-driven sales services at both the front-end and back-end stages? Transportation Research Part E: Logistics and Transportation Review, v. 194, p. 1-25, 2025. https://doi.org/10.1016/j.tre.2024.103923.

WEISZ, E. et al. Artificial intelligence (AI) for supply chain collaboration: implications on information sharing and trust. Online Information Review, v. 49, n. 1, p. 164-181, 2025. https://doi.org/10.1108/OIR-02-2024-0083.

WOBO, K. N. et al. Medical students’ perception of the use of artificial intelligence in medical education. International Journal of Research in Medical Sciences, v. 13, n. 1, p. 82, 2025.

YOGAPRIYA, G.; SUBRAMANIAN, C. V.; PRAKASH, K. Ashwin. Application of artificial intelligence in smart buildings. In: AIP Conference Proceedings. AIP Publishing, 2025. https://doi.org/10.1063/5.0247215.

Descargas

Publicado

2025-01-30

Cómo citar

Montenegro, S. da C., Veloso, J. de S., & Nascimento-e-Silva, D. (2025). ANALYSIS OF APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN MATERIAL STORAGE: A BIBLIOGRAPHICAL STUDY. Revista Multidisciplinar Do Nordeste Mineiro, 2(01), 1–28. https://doi.org/10.61164/rmnm.v2i01.3491