
Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

1

SINCPOINT UMA PROPOSTA DE FERRAMENTA DIDÁTICA PARA ENSINAR
SINCRONIZAÇÃO DE RELÓGIOS EM SISTEMAS DISTRIBUÍDOS UTILIZANDO

O ALGORITMO DE BERKELEY

SINCPOINT A PROPOSAL FOR A DIDACTIC TOOL TO TEACH CLOCK
SYNCHRONIZATION IN DISTRIBUTED SYSTEMS USING THE BERKELEY

ALGORITHM
Wilcker Richard Sierra Neckel

Undergraduate in Computer Science, Mato Grosso State University, Brazil

E-mail: wilcker.neckel@unemat.br
ORCID: https://orcid.org/0009-0007-0914-1538

Luís Gabriel Tavares Ferreira
Undergraduate in Computer Science, Mato Grosso State University, Brazil

E-mail: luis.gabriel@unemat.br
ORCID: https://orcid.org/0000-0001-8395-8844

Eduardo Campos de Oliveira
Undergraduate in Computer Science, Mato Grosso State University, Brazil

E-mail: eduardo.campos@unemat.br
ORCID: https://orcid.org/0000-0002-9707-6022

Diógenes Antonio Marques José

Master of Computer Science, Mato Grosso State University, Brazil

E-mail: dioxfile@unemat.br
ORCID: https://orcid.org/0000-0002-9707-6022

Resumo

Nos cursos de Ciência da Computação, a disciplina de sistemas distribuídos é essencial, e a

sincronização de relógios é um dos tópicos centrais abordados nesse contexto. No entanto, devido

à sua natureza abstrata, muitos alunos enfrentam dificuldades para compreender como a

sincronização de relógios realmente funciona. Com isso, este artigo tem como objetivo apresentar

uma ferramenta didática chamada SincPoint, que visa facilitar o aprendizado de sincronização de

relógios. O SincPoint é um aplicativo web desenvolvido em JavaScript, projetado para simular de

forma visual e interativa o funcionamento do Algoritmo de Berkeley, um dos métodos mais

importantes para sincronização de relógios em sistemas distribuídos. Após uma série de testes,

observou-se que a ferramenta proposta contribui significativamente para o entendimento da

sincronização de relógios, proporcionando uma experiência de aprendizado mais clara e acessível.

Palavras Chaves: Sistemas Distribuídos; Sincronização de Relógios; Ferramenta Didática;

Algoritmo de Berkeley.

Abstract

In Computer Science courses, the study of distributed systems is fundamental, with clock

mailto:wilcker.neckel@unemat.br
https://orcid.org/0009-0007-0914-1538
https://orcid.org/0000-0001-8395-8844
https://orcid.org/0000-0002-9707-6022
mailto:xxxxx@xxxx.xxx.br
https://orcid.org/0000-0002-9707-6022

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

2

synchronization being one of its key topics. However, due to its abstract nature, many students find

it challenging to grasp how clock synchronization operates in practice. This article introduces

SincPoint, an innovative teaching tool designed to address this challenge by simplifying the concept

of clocks synchronization. SincPoint is a web application built with JavaScript that provides an

interactive and visual simulation of the Berkeley Algorithm, a widely-used method for clock

synchronization in distributed systems. Through a series of tests, it was found that SincPoint

significantly enhances students' understanding of clock synchronization, offering a more intuitive and

accessible way to learn this complex topic.

Keywords: Distributed Systems; Clock Synchronization; Teaching Tool; Berkeley Algorithm.

1. Introduction

 In distributed systems, one of the variables that requires the most attention is

time, as ideally, it should always be as accurate as possible. However, time accuracy

does not always occur due to the nature of Distributed Systems, as their components

are geographically dispersed (Tanenbaum and Steen, 2017). In addition, clock

synchronization in distributed systems is the main concept when it comes to

recording events, for example, events involving sending and receiving messages.

 In this context, reaching a time agreement is a challenge in distributed systems

because, in some situations, there is no global clock that all processes agree on.

Therefore, to solve this problem, several clock synchronization algorithms have

been proposed, such as (Gusella and Zatti, 1989), (Cristian, 1989), (Mills, 1989),

(Lamport, 1978), etc.

 Consequently, one of the most widely used clock synchronization algorithms

in distributed systems is the Berkeley Algorithm (Tanenbaum and Steen, 2017). This

algorithm differs from the others because the time server is active, that is, the server,

which is the reference, periodically asks the clients what time they have. In this way,

each client sends its current time to the server, which calculates an average between

it and the clients and from this returns to each client what they should adjust in their

clocks, advancing or delaying their local times.

 Distributed Systems is a fundamental discipline in computer science courses

at universities worldwide, and the subject of clock synchronization in distributed

systems is one of the most important topics in this discipline. Therefore, given the

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

3

above, a problem in teaching clock synchronization in distributed systems is the

lack of tools that enable learning the concepts of clock synchronization in a didactic

and visual way, to facilitate the understanding of this concept that is, in most cases,

seen by students as complicated and very abstract.

 Thus, the objective of this work is to present a tool to aid in teaching clock

synchronization in distributed systems called SincPoint. SincPoint emerged due

to the lack of didactic tools to teach clock synchronization, playfully, in distributed

systems, and it consists of a Web page developed in Java Script that visually

simulates the operation of the Berkeley Algorithm. Consequently, computer science

teachers, when teaching clock synchronization in distributed systems, can use this

proposal to facilitate students' learning on the topic “clock synchronization in

distributed systems”.

 Among the advantages of SincPoint, the following stand out:

1. It was developed in JavaScript, a very popular language used to develop

web pages;

2. It has a user-friendly graphical interface, which provides meaningful and

relevant experiences to users (UX);

3. It works on Linux, Windows, Android and Mac OS systems, and can be

accessed from personal computers, notebooks, and smartphones;

4. It has installation and usage instructions, available on GitHub1;

5. It is completely free, Creative Commons 4.0 license.

 The proposed application, SincPoit, was evaluated using Linux systems

(Debian and Mint) and a cell phone with Android 11. The results showed a fast

response in the manipulation of the simulator components (e.g., computers, master,

and clients) and in the synchronization of these components on both tested

platforms. Thus, students of distributed systems will be able to visualize, in practice,

the concept of clock synchronization in distributed systems with the Berkeley

Algorithm.

 The remainder of this work was divided as follows: Section 2 presents the

1 https://github.com.

https://github.com/

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

4

literature review; Section 3 presents the related work; Section 4 presents the

description of the proposal and methodology; Section 5 presents the results and

discussion; and finally, Section 6 presents the conclusion and possibilities for future

work.

2. Literature Review

2.1 Clock Synchronization Algorithms in Distributed Systems

 This section presents some of the main works on clock synchronization, for

example, Cristian's method, Lamport's algorithm, and the Berkeley Algorithm.

2.1.1 Cristian's Method

The method suggested by Flaviu Cristian in 1989 uses a time server using

Coordinated Universal Time (UTC) data. As discussed by Cristian (1989), the client

requests the time from the server, receiving the server's current time ‘T’ as the

response, so that the client can update its clock by adding ‘T’ to the round-trip time

divided by two (RTT/2).

For example, the formula used to calculate the client's clock is [T + RTT/2],

where T is the clock time returned by the server and RTT2 is composed of the time in

which the client receives the response from the server (t1) minus the time in which

the client sends the request to the server (t0).

The precision is given by RTT ±(− Tmin), where Tmin is the minimum round-

trip time from the source to the destination, that is, from the client to the server. If

Tmin is unknown, it is assumed to be zero. The closer the RTT gets to Tmin, the

higher the accuracy.

2.1.2 Lamport's Algorithm

2 RTT=(t1-t0).

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

5

Lamport (1978) showed that there are cases in which synchronization does

not need to be absolute, such as when two processes do not interact. In this way,

only the order in which the events occur matters (Tanenbaum and Steen, 2007).

Thus, for the synchronization of logical clocks, Lamport defined the happens-

before relationship, expressed by a → b or ‘a happens before b’. Following this logic,

the algorithm assigns a number corresponding to its logical order to each event, so

the following events have higher numbers than the previous ones.

For example:

1. a and b are events of the same process, and a occurs before b, so a → b

is true;

2. a is the event of a message being sent by p1, and b is the event of the same

message being received by i, so a → b is true;

3. Furthermore, the relationship between the events a → b is transitive.

Therefore, a → b and b → c, so a → c.

Consequently, event a has a clock C(a) that everyone agrees on, e.g., a → b,

so C(a) < C(b). In this context, C always occurs forward, and the time is always

positively corrected. Consequently, the Lamport algorithm is as follows:

• (Step 1 (Local process - pi)) Before some event (e.g., sending a message

to the network and delivering it to the application) pi executes Ci ← Ci + 1;

• (Step 2 (Local process - pi)) If pi sends a message m to pj, then it sets the

message timestamp m ts(m) to equal Ci, after having executed Step 1 (Local

process, pi);

• (Step 3 (Remote process - pj)) Upon receiving m, pj sets the local counter

to Cj ← max{Cj, ts(m)}, after which Step 1 is executed, and the message is delivered

to the application.

2.1.3 Berkeley Algorithm

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

6

Gusella and Zatti (1989) proposed an algorithm in which one computer is

chosen as the master (server), and the others are called slaves (clients). In this

context, the master talks to all the other computers, asking what time each one is

keeping. After getting the answers, it calculates an average time of the hours,

including its own, and responds individually with the time that each machine needs to

advance or delay its clock, Figure 1.

Figure 1: Example of the execution of the Berkeley Algorithm.

As illustrated in Figure 3, panel (a) shows the time the server requesting the time from

the clients, panel (b) shows the clients returning their respective times to the server,

and panel (c) depicts the server calculating the average time and instructing each

client on whether to adjust their clock by advancing or delaying it (Tanenbaum and

Steen, 2007).

3. Related Work

 This section presents simulators that are proposed and that implement the

Berkeley Algorithm. These works were used as comparison parameters with our

proposal, SincPoint.

 In (GEEKSFORGEEKS, 2023) an implementation of the Berkeley Algorithm

is presented, developed in Python3, and divided into two parts: one that imitates the

client nodes and another that imitates the server node. The proposal in question

presents a demonstration with four nodes, a master computer, and three slaves. The

computers synchronize their times using sockets on port 8080 and a loopback

interface (e.g., 127.0.0.1). In this context, the simulator demonstrates the correct

functioning of the Berkeley Algorithm, however, it does not implement a graphical

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

7

interface that, in this case, could facilitate learning and understanding of how the

algorithm works.

 The proposal presented by (Moraes and Arakawa, 2020) describes a

simulator of the Berkeley Algorithm that uses Docker containers. According to the

authors, this is a simulator for the class of distributed systems that uses five

containers as machines, and a daemon (e.g., server) that applies the algorithm to

the other machines. However, on the proposal website (e.g., GitHub) there is no

description of how to test the application. Furthermore, there is no information on

whether it runs on the command line or has a graphical interface.

 In (Kumar, 2023), a simulator of the Berkeley Algorithm developed in Python

is presented. The code is organized into two primary functions: def master_main(),

which simulates the behavior of the server, and def client_main(), which simulates

the behavior of the client. This implementation serves as a basic example, but it lacks

both a graphical interface and exception handling.

 In (BE-DISTRIBUTED-SYSTEMS, 2023), a Java-based simulator of the

Berkeley Algorithm is presented, consisting of six classes: TimeServer.java,

ClockOne.java, ClockTwo.java, ClockThree.java, and MainClock.java for the

client-side code. The simulator uses Java RMI for distributed communication between

the clients and the server. However, the GitHub repository for this project does not

include test examples. Besides that, it also lacks a graphical interface. This absence

of a visual interface can make it more difficult for beginners to understand and learn

the concepts of distributed systems.

 In (Tan, 2021) a simulator of the Berkeley Algorithm is proposed, developed in

C++. The proposal in question is complete, as it has real network communication

made in a TCP socket. In addition, it has a video tutorial showing the execution of the

simulator, on a Linux system, with four nodes, three clients, and one server. In this

context, the author explains in detail the Berkeley Algorithm and how to use the

simulator. However, despite being a great reference for students looking for an

implementation of the Berkeley Algorithm, the simulator does not have a graphical

interface.

4. Proposal Description

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

8

 SincPoint is a web application developed in JavaScript to simulate the clock

synchronization process in distributed systems using the Berkeley Algorithm. It is

available for download on the GitHub3 development platform. Thus, the project

structure is organized into four main parts: Components, Contexts, Assets, and the

App.jsx file. The Components directory contains reusable components used

throughout the application, while Contexts handles the global states and contexts.

The Assets folder stores images, icons, and other static resources. The App.jsx file

serves as the central hub of the application, containing key functions such as

applyBerkeleyAlgorithm, handleSync, and others. Consequentely, the Berkeley

Algorithm is implemented in the applyBerkeleyAlgorithm function, as described in

Table 1. This function's primary role is to calculate and record the time adjustments

(either increment or decrement) for each clock in the list.

Table 1: Description of the actions of the applyBerkeleyAlgorithm(clockList) function.

Steps Action

1 Convert the times of the clocks in the clockList list to manipulatable objects.

2

Calculate the average time for each clock:

For each clock in the list:

a) Get the current time in milliseconds;

b) Add up all the times;

c) Divide the total sum by the number of clocks.

3

For each clock in the list:

a) Get the current time in milliseconds;

b) Calculate the difference between the average time and the current time;

c) Record the necessary adjustment in milliseconds.

Source: Authors.

The handleSync function described in Table 2 was used to call

applyBerkeleyAlgorithm, so that the clocks in the list can be updated. The start and

end times of execution are also recorded to provide the time it took for the simulated

computers to synchronize with the server. Since SincPoint is a simulator, the round

3 https://github.com.

https://github.com/

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

9

trip time from the client to the server was not considered in the

applyBerkeleyAlgorithm function, nor was the total execution time of the program

to be presented to the user at the end. For example, considering 3 computers, as

shown in Figure 2, one server and two clients with clocks that are out of sync. Thus,

the server/master with Internet Protocol (IP) address 192.168.1.200 asks the

clients/slaves for their date/time stamps. Based on this data, the server calculates the

average time and sends each of the clients/slaves, including itself, the time they need

to adjust their clocks.

Table 2: Description of the handleSync() function actions.

Steps Action

1 Record the start time of execution.

2

Call the applyBerkeleyAlgorithm function:

a) Return the list of adjusted clocks;

b) Update the adjusted clocks in the list.

3
Record the execution completion time:

a) Calculate the total execution time.

Source: Authors.

Figure 2: Synchronization model with two clients and one server.

(a) (b) (c)

Figure 2 shows (a) the server requesting time, (b) the clients responding to the
server, and (c) the server calculating the adjustment (average) and returning this
adjustment to the clients. Source: Authors.

4.1. Materials and Methods

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

10

 This work is based on a comprehensive bibliographic review, drawing on key

references related to clock synchronization, including works by Colouris (2013),

Tanenbaum and Steen (2007), Lamport (1978), Gusella and Zatti (1989), Flaviu

Cristian (1989), and Rodrigues (2017). The following technologies were utilized in the

development of the application:

 Software:

 Programming Language: JavaScript (v18.19.0)

 Libraries: React (v18.3.1) for building the user interface, Material-UI

(v6.1.6) for styling components and ensuring responsive layout, Day.js

for date and time manipulation, and Vite (v5.4.10) to streamline the

development process;

 Web Server: Nginx (v1.24.0) to serve the application;

 Operating Systems: Ubuntu 24.04.1 LTS (64-bit) for hosting the

application, Debian GNU/Linux 12 (64-bit) for development, Linux Mint

21.2, and Android 11 for testing.

 Development Hardware:

 Intel Core i5-7200U CPU (2.50GHz), 8GB DDR4 RAM, GeForce 940mx

GPU, 500GB SSD.

 Web Server Hardware:

 AMD EPYC 7543P processor with 32GB RAM.

 Testing Hardware:

 Notebook: Intel Pentium Gold 7505 (2.00GHz), 12GB DDR4 RAM,

120GB SSD.

 Smartphone: MediaTek P22 octa-core (up to 2 GHz), 2GB RAM, 32GB

storage.

 Application Testing: The application was tested on two devices - a notebook

and a smartphone - within a class C network (192.168.1.0/24). The testing

process involved adding clients, performing clock synchronization using the

Berkeley Algorithm, and analyzing the results.

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

11

5. Results and Discussion

 The proposal in question consists of an interactive application, called

SincPoint, capable of running online (e.g., https://sincpoint.nexsyn.com.br) and

whose objective is to simulate the operation of the Berkeley Algorithm to aid in

teaching clock synchronization in distributed systems in a practical and visual way.

 Given the above, the main functionalities of SincPoint are:

1. Adding devices with customized IP addresses and times;

2. Monitoring the current time of each device directly in the interface;

3. Synchronizing the times of all computers with a single click;

4. Responsive and interactive interface compatible with mobile devices and

Desktops.

 Therefore, when accessing the application link

https://sincpoint.nexsyn.com.br, the user will see a Server, Figure 3(a), in the center

of the screen, with the IP address 192.168.1.200 and a display of the current time

below. On the right side of the page, there is a bar that, when pressed, displays a

small form, Figure 2(b), for entering client machines, Figure 2(c), with their respective

IP addresses, time, and date.

Figure 3: SincPoint web interface with two clients and one server.

(a) (b) (c)

Source: Authors.

Throughout the development process, several tests were performed to define

the appropriate color palette and define the icons that best fit the purpose of the

simulator. In addition, a multitude of bug fixes and updates were performed to improve

the interface and operation of SincPoint.

To represent the communication that occurs between the clients and the

server, according to the model described previously in Figure 2, instead of arrows, a

https://sincpoint.nexsyn.com.br/
https://sincpoint.nexsyn.com.br/

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

12

wave-shaped animation was used that starts with a light green color and fades away

until the messages between the server and the clients are delivered.

For example, considering a scenario with two computers and a server, the first

wave is emitted by the server, then the client computers also emit a wave, and finally,

the server ends the communication with the final wave.

Figure 4 shows the test performed with two client computers on an Android

Smartphone with a MediaTek P22 processor. Thus, we configured the server time

with the following timestamp 14:40 and IP 192.168.1.200. The clients were configured

with the following timestamps 14:53:04/14:02:07 and IP addresses

192.168.1.2/192.168.1.3 respectively.

Figure 4: SincPoint test performed with a Smartphone.

(a) (b) (c)

Source: Authors.

Figure 4(a) illustrates the initial state, and Figure 4(b) shows the

communication between clients and server through circular waves. Figure 4(c)

shows all computers with their times updated (e.g., “Synchronized Clocks”

message). The value that was advanced or delayed on the machines’ clock is

displayed at the top of the server and computer icons. In addition, the application

displays a message with the time needed to perform the synchronization. In the case

of the test with the Smartphone, the time for synchronization was 10 milliseconds.

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

13

However, the display time of the wave, which simulates the transmission of

the message, is not counted. Figure 5 illustrates the test performed on the notebook

with Linux Mint and Intel Pentium Gold 7505 processor. Consequently, Figure 5(a)

shows the initial state of the synchronization, Figure 5(b) shows all computers with

their updated times, showing the value that was advanced or delayed on each client's

clock, and, finally, Figure 5(c) shows the time that was necessary to perform the

synchronization. In this context, the synchronization time using the notebook was 1.3

milliseconds.

Figure 5: SincPoint test performed with a Notebook.

(a) (b) (c)

Source: Authors.

Therefore, after several tests on the application, some adjustments were

made to improve the user experience, such as, for example, increasing the duration

of the messages that are displayed as a result at the end of the execution and some

color adjustments to make the process more pleasing to the users' eyes.

6. Conclusion and Future Work

 This paper presented SincPoint, a web application based on the Berkeley

Algorithm (Gusella & Zatti, 1989), designed to enhance the learning experience of

clock synchronization in distributed systems. The tool aims to assist computer science

educators in visually demonstrating the operation of one of the most widely used clock

synchronization algorithms, making it easier for students to understand this complex

concept.

 The main contributions of this work are as follows:

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

14

1. Uniqueness: SincPoint is a novel tool, as no other educational tools for

teaching clock synchronization in distributed systems offer the same

functionality.

2. Technology Stack: The application was developed in JavaScript, a widely

used language for creating web applications, ensuring broad accessibility and

compatibility.

3. Interactive Interface: SincPoint features an intuitive and engaging graphical

interface that enhances the user experience (UX), making the learning process

more interactive and informative.

4. Multiplatform Compatibility: The tool is cross-platform, running on Linux,

Windows, Android, and macOS, and is accessible from desktops, laptops, and

smartphones.

5. Documentation: SincPoint comes with a comprehensive installation and user

guide, available on GitHub, making it easy for users to get started.

6. Open-Source: The application is completely free to use, licensed under

Creative Commons 4.0, allowing users to modify and share it.

 Following extensive testing, several adjustments were made to improve the

user experience, including extending the duration of messages displayed at the end

of the execution and adjusting color schemes for better visual appeal and readability.

Therefore, based on the experiments performed, students can learn in detail

how the Berkeley algorithm works visually and interactively, which facilitates the

learning of clock synchronization in distributed systems. Consequently, the most

significant contribution of this work is that through SincPoint it is possible, as a

didactic in the distributed systems discipline, to develop practical and laboratory

activities.

In future work, we will expand SincPoint to allow the user to also test the

algorithms of Cristian (1989) and Lamport (1978). In addition, in new updates, we

intend to correct some gaps in the proposal, for example: 1) the application as it is

does not allow changing the server time, which can frustrate users who want to set

up a specific scenario for calculating the time; and 2) create a version of SincPoint

that synchronizes the clocks of physical machines instead of just simulating.

Revista Multidisciplinar do Nordeste Mineiro, v.12, 2024

ISSN 2178-6925

15

7. References

BE-DISTRIBUTED-SYSTEMS. Berkeley Algorithm. GitHub Plataform, 8 Dec, 2023.
Available at: https://github.com/BE-Distributed-Systems/BerkeleyAlgorithm.
Accessed on: Oct 18, 2024.

COULOURIS, G.; DOLLIMORE, J.; KINDBERG, T.; BLAIR, G. Sistemas
Distribuídos: Conceitos e Projetos. 5ª Edição, Porto Alegre, Editora Bookman,
2013.

CRISTIAN, F. Probabilistic Clock Synchronization. Distributed Computing, Spring
Verlang, Volume 3, p. 146–158, 1989, DOI: https://10.1007/BF01784024.

GEEKSFORGEEKS. Berkeley’s Algorithm. Tutorial Site Geeks for Geeks, 15 Mar,
2023. Available at: https://www.geeksforgeeks.org/berkeleys-algorithm/. Accessed
on: Nov 28 , 2024.

GUSELLA, R.; ZATTI, S. The Accuracy of the Clock Synchronization Achieved
by Tempo in Berkeley Unix 4.3bsd. IEEE Transactions on Software Engineering,
Volume 15, Issue 7, p. 847–853, 1989, DOI: https://10.1109/32.29484.

KUMAR, S. Berkley Algorithm Implementation. Site Tutorialspoint, 8 Feb, 2023.
Available at: https://www.tutorialspoint.com/berkeley-s-algorithm. Accessed on: Jun
11, 2024.

LAMPORT, L. Time, Clocks, and the Ordering of Events in a Distributed System.
Communication of ACM, Volume 21, Issue 7, p. 558–565, 1978, DOI:
https://10.1145/359545.359563.

MORAES, M.; ARAKAWA, K. Berkley Algorithm Simulator. GitHub Plataform, 9
Dec, 2020. Available at: https://github.com/MicaelBarreto/Node-Berkeley-Algorithm.
Accessed on: Dec 1, 2024.

RODRIGUES, J. S. R.; LIMA, R. A.; JOSÉ, D. A. M. Algoritmo para Sincronização

de Relógios Físicos em Sistemas Distribuídos. Anais da 15ª ERRC, p. 42-49,

Setembro 2017.

TAN, D. Berkley Algorithm Simulator. GitHub Plataform, 7 Dec, 2021. Available at:
https://github.com/DayuanTan/berkeley-algorithm-implementation. Accessed on: Oct
20, 2024.

TANENBAUM, A. S.; STEEN, M. Distributed Systems. Create Space Independent
Publishing Platform, 3rd Edition, 2017.

TANENBAUM, A. S.; STEEN, M. V. Sistemas Distribuídos: Princípios e
Paradigmas. São Paulo: Pearson Prentice Hall, 2º ed., 2007.

https://github.com/BE-Distributed-Systems/BerkeleyAlgorithm
https://10.0.3.239/BF01784024
https://www.geeksforgeeks.org/berkeleys-algorithm/
https://10.0.4.85/32.29484
https://www.tutorialspoint.com/berkeley-s-algorithm
https://10.0.4.121/359545.359563
https://github.com/MicaelBarreto/Node-Berkeley-Algorithm
https://github.com/DayuanTan/berkeley-algorithm-implementation

